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As inertial navigation instrumentation was’ become: more advanced,

/)hé'errorq associated with inmprecise knowledge of the true gravity vector

‘_,qhave become significant, With the development of the moving base gravity

gradiometer, Gagoing for the past ten yearg,za means for detecting the
true gravity vector is available, This research explores both real time
and a priori schemes for using th€ gradiometer information to reduce the

position and velocity error associated with an inertial navigation system,

In the real time application, information derived from the gradio-
meter is filtered to produce estimates of position and velocity error,
The oroblem is to derive accurate filters in the presence of an inherently
transcendental gravity field, Conventional Kalman filters are very-
cumbersome to apply in this instance, However, the sensitivity of iner-
tial navigation systems at Schuler frequency makes it possible to neglect
errors outside of a narrow band of frequencies centered at Schuler fre-

quency., This approximation leads to low order filters which may be

app11eg. itb-ﬁ’priqing accuracy, ———
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to Wbl&ah a refef'eg!e gravity model to be used in npen loop

or ‘the survyy aga}1cat1on the gradiometer is used

inertlal navigation system operation, By determi: 2 root mean
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squared %?lues of the resulting position and veloci:y . “s‘it is vossi-
ble to evaluate the effectiveness of the survey scheme and to compare
the survey application with the real time gradiometer application, “Ageing —
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malytic and numeric covariance methods aré use q%to do these analyses,
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Chapter 1

INTRODUCTION

A. PROBLEM STATEMENT

For inertial navigation a gyro stabilized platform is used to
spatially orient accelerometers which measure specific force. Specific
force is the vector (difference) of the quantity to be determined, inertial
acceleration, and gravity, Therefore to isolate inertial acceleration
the true gravity vector must be found, It cannot be measured directly
from a moving vehicle because it is inseparable from the effects of inertial
acceleration, However, the gradients of the gravity field are separable
from those of a linear acceleration field (zero if nonrotating) thus making
it possible to calculate the changes in gravity, By spatially integrating
these changes on-line, variations in the true gravity vector may be deter-
nined, If these variations are used in conjunction with periodic platform
leveling and position fixes, the true gravity vector can be found. It is
now a simple matter to difference the true and assumed (from a reference
gravity model) gravity vectors to obtain the gravity perturbation vector,
The horizontal components of the gravity perturbation vector represent the
deflections of the vertical uncertainties of which cause errors in the

horizontal inertial navigation channels.

The problem addressed by this research is to determine how to use
the gradiometer to most effectively reduce the gravity deflection error
contribution to the inertial navigation system (INS) horizontal position
and velocity outputs, This is distinct from the greater question of how
large the geodetic error is when compaicd with the instrument errors in
the inertial navigation system, A discussion of this separate question
is given by Hildebrant, et al,, [1] and shows, for instance, that the
geodetic portion of the total incrtial navigation velocity crror budget
may be as high as 70% in state-of-the-art systems, There arec two ways
to use the gradiometer to improve inertial navigation. The first way

is to estimate in real time the velocity and position crrors propagating

-1-
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in the INS basic output loop, In reality this portion of the problem
primarily involves the derivation and evaluation of approximate low—
order filters roi velocity and position error estimation, Approximate
filters are advantageous because they circumvent the problems which
arise from working with inherently transcendental gravity field spectra.
The second wethod is to survey the area which the INS carrier vehicle

is to traverse, Using this information the reference gravity model
contained in the INS output loop is updated to reduce the residual be-
tween true and reference gravity, This involves updating the gravity
perturbation power spectrum and subsequently determining rms position and

velocity error for survey parameter optimization and real time comparisons,

Since navigation on the surface of the earth is generally more
important than vertical position, this research will focus on only the
horizontal channels of a locally level INS, though some of the methods
could be applied to the vertical channel.

B, GRADIOMETER DEVELOPMENT AND PREVIOUS WORK

Moving base gravity gradiometers have been under development for the
past 13 years, This development, done under the auspices of the Air Force,
Navy and the Defense Mapping Agency, resulted in two workable gradiome-
ters: one by the Bell Laboratories [2], and one by the Draper Labs [3], The
Bell instrument was chosen by the Navy as the most advantageous
design for their applicétidn, and will be used when reference
to hardware is necessary, The Bell instrument is commonly called a
"rotating gravity gradiometer” (RGG) because the measurement unit is
actually rotated to separate spectrally the gradient signals from out-

side disturbances,

The gradiometer research done at Stanford began 1in 1972
under the auspices of the U.S, Air Force Geophysics Laboratory. Pelka's
dissertation [4] dealt with improving the accuracy of the Hughes'
(prototype) gradiometer using on-line parameter estimation and control

techniques. Subsequent studies by DeBra, Breakwell, Schaechter, and

-2
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Karosaki deall with the development of gravily wodels used Lo deter-

mine the performance of the gradiometer in mapping the earth's gravity

field [5]. The culmination of this work describes the use of a gravity

gradiometer aboard a horizontally moving vehicle to estimate gravity

deflection and anomaly [6]. Gradiometer derived improvements of inertial

navigatien and gravity survey work are presented in this dissertation,

C. NEW RESULTS

Whereas most previous research on gradiometers has dealt with the

instruments themselves, the research reported here deals with the

processing of gradiometer data both in real time and after the fact

(the latter being called the "survey” use). No other investigators

have addressed these aspects of the problem as they have been addressed
here,

Specific contributions are:

1., The development of a method for deriving approximate Wiener
filters for estimation of INS position and velocity error;

2, The statistical evaluation of these filters to determine rela-
tive and absolute optimality:

3, The statistical evaluation of various survey schemes for update
of the reference gravity model;

4, Development of an improved version of licller's gravity model
to portray more accurately the perturbation potential in light
of the latest gravity dats available,

|
{
|




D, THESIS OUTLINE

i -

{ The full inertial navigation system error equations and the assump-
tions used to simplify them for use in this research are presented in

Chapter II,

Chapter III presents three statistical gravity perturbation models

used in the covariance analyses presented in Chapters V and VII, The
i first model is rational (the reason for its use) but somewhat inaccurate,

The second and third models are transcendental but are representative

: of the most accurate gravity perturbation models available,

L ' In Chapter IV the basic theory used in deriving approximate real
[ time filters is shown, along with examples, for a wide spectrum of meas-

urement combinations,

Several filters obtained in Chapter IV are evaluated and compared

by covariance methods in Chapter V,

In Chapter VI the theory used in analyzing the effect of a gravity

survey on INS performance is developed,

In Chapter VII covariance data for the survey scheme is computed

e ot ity PR TP ISV, B N N AT R A PTET §1F et b P 8P ir e

and compared with data obtained from the real time application. The

-

ultimate goal of this comparison is to determine which gradiometer

application is most desirable under a given set of conditions,

In Chapter VIII the conclusions and future recommendations of this

research are presented,




Chapter II

INERTIAL NAVIGATION ERROR EQUATIONS

Before looking at the error equations associated with conventional
inertial navigation systems (INSs) it is instructive to examine the
basic navigation loop used throughout this research, Figure II-1 is
a schematic of this loop. Note that some type of external velocity

m
measurement (V') is assumed for damping of Schuler oscillations.

A, FULL INERTIAL NAVIGATION SYSTEM ERROR
EQUATIONS

The error equations relating the gravity perturbations to INS
position and velocity error have been developed in detail by Heller r71.
These equations assume an INS mechanized in a local-level wander-azimuth
frame and coordinatized in a local-level north—-pointing frame, The
full position and velocity error equations for the horizontal channels

of an INS are given below {from Ref, 71]:

. 2
= - - 'I'
6VN L. Asz + Asz mSSRN L.
VE
- (20 sin L + == tan L) &V
R E
D
VN m
< 5y - k - .
+ R<D vz BvN kva,!i + kvz"'n + k8VN : (2.1)
v A A sz + + (24 sin L
Vg = Hpt sz - Nwz - WPRg + By + (U sin
vE vE
+ E; tan L)&VN + (24 cos L + E;)mvz

. m .
= KAV = KV ¥+ RV KV (2.2)
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VE vN
5RN = 8VN - EE tan L mRE —'E; “Rz H (2.3)
iy . VE - Ve -
RE = uVE + T{"T) tan (vRN RD . . (2.4)

B, SIMPLIFYING ASSUMPTIONS AND RESULTING

ERROR EQUATIONS

The error equations are linear thus allowing difflerent error con-
tributors to be superposed, In order to focus on gravity induced errors
the nongravitational error sources in (2,1) to (2.4) (i,e,, accelerometer
bias, u, platform misalignment, {, etc.) may be set aside [1]. Further-

more, the north and east equations may be decoupled without limitation to re-

search objectives, Therefore the following assumptions have been made,

1) The carrier vehicle travels due north*;

2) There are no platform misalignment or accelerometer bias errors:
3) The carrier vehicle altitude is fixed;

4) The earth is nonrotating,

With these assumptions the horizontal channel error equations become

8V = -wzan - k[gv - sV + g (2.5)
X X b.4 X X
. 2 m
= -wBR_ - k[dV - &V ] + 2.6)
5vy ORy { y v gy (
SR = &V 2.7
X X
SR = oV . (2.8)
y y

This assumption is simply a manifestation of the particular north-east
down coordinate system chosen in (2,1) through (2,4), Fquations (2.5)
through (2.8) would remain Lhe same had another local-level coordinate
system been selected to coincide with the in-track (x) and cross-track
(y) directions of a vehicle traveling other than north, Thus the

analysis done here applies to a carrier vehicle traveling in any direc=-
tion over a non-rotating earth,

-7
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Note that since the carrier vehicle travels due north this direc-
tion will henceforth be denoted in-track (x subscript) and the easterly

dircction denoted cross—track (y subscript),
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Chapter III

STATISTICAL GRAVITY PERTURBATION MODELS

A stochastic study of INS position and velocity error requires that
the gravity perturbation terms in Eqs, (2.5) and (2,6) be statistically
modeled. Three models were used in this study, The first is a relatively
inaccurate rational model used solely for Kalman filter comparisons, as
a rational model is necessary for a Kalman realization, The last two
models have the same basic form, the only difference being a slight para-
meter modification in the final version to fit observed data more closely,
These models are transcendental but portray more accurately the earth's
actual gravity field., All threce of these models were developed by the

processing of empirical data such as that collected by Rice [8],

A, SECOND-ORDER MODEL

The details of this model are fully detailed by Kasper [9] and reit-
erated by Heller [10], To summarize briefly, it is a second-order model
consisting of zero mean white noise put through a shaping filter as shown

in Fig, III-1,

1
EE—— - K, Or g
w » kx Ly

(s + P2

FIG, III-1 SECOND-ORDER GRAVITY PERTURBATION MODLEL

The Markov parameter [ is defined as
&K
Ro= Vx/d . 3.1

where d is the vertical deflection ensemble characteristic distance.

The constant d 1in Kasper's model is related to the more commonly
known correlation distance (D) by the relation: D = 2,146d,




This model may be used in ejther the in-track or cross—track direc-—

tions, However, the Kalman filter cowparisons need only be done cross-

track to demonstrate the accuracy of the approximate filters. The spec-

tral density of the white noise wl, is given as

a, - 40> . (3.2)
1 £
y
where
. 2
Ug = E{Wf} .
y

A state space description of this model, required in Ch, V, may be written

as

e e - — it . — e A A - et

I . -
X B 0 Xy v
! = + .
’ £ 1 -giis o (3.3)
y -y

where x1 is a Markov Process state variable,

B. BASELINE HELLER MODEL

This statistical model was developed by lleller [11] and describes
perturbations in the earth's surface potential away from an ellipsoidal
geoid as fictitious white noise potential fluctuations restricted to a
few thin layers below the carth's surface, The model, as shown below,
is defined by the power spectral density (PSD) of surface potentjal

fluctuations

8 ~8 s -5 3 -ZIQSIDi
bay &z =0) = X ([5°];5 0) = 12_1»‘1'3 (3.4)
where
W
- X
W - .
[V
y
-10-
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The values for the depths (Di's) and PSDs (Qi's) of the three

layers of interest given by Heller are listed in Table III-1,

Table III-1

BASELINE HELLER MODEL PARAMETERS

i D, ¢,
i i
- 4
(km) (km /sec )
-8
1 16.3 7.1 x 10
-4
2 92.5 1.07 v 10
. . -2
3 390.5 1.16 x 10

To determine the relationship between surface potential fluctuations
and potential fluctuations at an altitude =z above the earth’s surface
it facilitates analysis to work with a "flat earth” approximation [12]
to Poisson's upward continuation formula for the earth's potential,

Poisson's upward continuation formula is given by

AU(R‘? Y $')

2 2 - = \3/2
r +Rc>'2r'nn)/

Ay(r, B, ©) = — > §
(

where the direction of the vector r is determined by the (r, 7, #) spher—
ical coordinate set, and the direction of ﬁ@ is determined by the set
(Rm, at, ¢'), The integration of (3.5) is done over the entire earth's
s;rface. The details of the derivation of (3.5) are given in App. A.

Making the ""flat earth” approximation (z << RW) to (3.5)

z
‘ ‘ 0 af
uﬂ[xz i yz ! z“]'/“

@ AU(x, y; 0)
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where 69 denotes convolution in two dimensions, Taking the fourier

transform of (3,6) yields
-5 I P
A ; z) = e (W ; 0) . (3.7)
This allows (3.4) to bhe rewritten as

s -S

3
-2 |=F s /=
'.‘\U‘\ A z) = e ‘wq z\bAU(h)s; 0) = Z ¢ e . (3.8)

[N
1]
ol

Because Heller has modeled the potential perturbations it is a
simple matter to obtain from (3.8) the two dimensional PSD expressions
for any of the gravity or gravity gradient perturbation.components. In

fact, the two dimensional spectral density matrix relating g , @ ¥

y =
ryy’ T, 1is miven by Kurosaki and Breakwell [13] as
r -
2 - - -2
ol N jmx|u| -mxwylwl ~ijlw|
w wi jwy|a)| -m3|§)| -Jwylalz
. 3 -zzila S L IR b |&|® jmy|(-u|2 152
[M-l = Z‘n‘ (8]
2-b ;i - 2,- -2 2.-2 -3
-wxmy|w| -wy|w| -jwy'wl w’twl Jwy]w]
-2 -2 -3 -3 -4
o a®  gw fol =6 3wy ful (@l
L J

where all w's indicate spatial frequency variation,

The spectral-density matrix along the line y = 0 is required

because the carrier vehicle is, by definition, always traveling in-track.

This matrix is obtained by performing the following operation:

-]12=

o ik,



- - -

|

(3.9)

The results of this operation are again shown by Breakwell and Kurosaki [13]

as

3 ¢
s
[M] E
i=1 TT(ZZ )
~
3 3
K, (a,) 0 -3apK} (a,) 0
0 23tkr(n,) -k, (a,)] 0 9
- "
10 TR Yy Egi[xl'(ﬂi)-K;(ﬂl)]
% jﬂgKi(ﬂi) 0 uix{(ni) o
4
Q 5
0 A gy o2
7, M ()R]0 L1 (9,)-K1(8,)]
4 4 ("
a 1
—tprt 1 .mn
2zlx’1(Q ) 0 2:1K; (2) 0
L
where
Kl(ni) = modified Bessel function of first order
91 = normalized frequency variable (Qi = ZZimi)
' = differentiation with respect to the variable

s
Although in [M]l_D the designated states are g, L

the PSDs of the in-track spatial derivatives of these quantit

ny, sz are easily obtained by multiplication by jwi. In

ryy may be found through the application of Laplace's equati

n + T + T -0,
XX yy 27,
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11 Q
(2:1)2 1o _J

(3.10)

Q. .
i
and Byt

ifes T ,
XX
addition,
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The zero correlations in (3.10) are interesting because they show
which gradient perturbation components wmay be used to estimate gx and gv

in Egqs. (2.5) and (2.6). The vero correlation between g and

.1 XV
the other states indicates that the optimal estimate of g, should

involve only the measurements ny and Tyz. The optimal estimate of

g_, on the other hand, should use only T , T T (or T ).
X XX X7. 7.2 y
Spectral separation considerations to be explained in Ch., V dictate
that a low [requency approximation to (3,10) be available. Such an approxi-

mation was developed by Breakwell and Kurosaki [13] and is shown below.

-——
r_‘
—k. 52 0 k. s 0 2k, s
1 2 3
0 -6
o 0 2k3 ¢k , 0
M) = (3.11)
1-D ~k,S 0 2k, 0 -6k,
0 -6k 0 24k_ 0
1 5
2k3$ 0 -6k, 0 24k,
L _
where
N 3 mi
ko= = ¥ . (3.12)
j i) J
i=1 (2z.)
1
and
S
s - jw . (3.13)
X

(. IMPROVED HELLER MODEL

In the course of this research it became necessary to improve
Heller's baseline model with the latest gravity data available in an
attempt to shorten the characteristic times of certain low frequency
poles, to be introduced in the next chapter, The process and result

of this improvement will be discussed here,

-14-




The data used to improve the baseline Heller model (BHM) was the
Goddard Earth Model (GEM) 10 data published by NASA f143. In the GEM 10
studies done by the NASA the earth's potential was described in the stan-

dard spherical harmonic form given below:

W £ R b1

b (3.14)

X [Cem cos mp + S, sin mo]

Im

' where the Clm'S and Slm's determined from satellite data actually define

} . GEM 10,

; If it is assumed that the gravity model used in an INS is at least
as accurate as GEM 10 then the rms potential coefficient error estimates
for GEM 10 taken from Ref, 14 (p., 55) should equal the rms potential coef-
ficient variation (031) of thehHeller model, The relation defining the
mean-squared potential coefficient variation lor both the spherical and

Heller models is derived in App, B and summarized as

2 2

n C 2 -
o2 mSgm (Rvn)’ 1 & Y (R'h Di)ﬂ%z (3.15)
J = 27 - - A D . 9, 5
) m=0 Jrkl M 41 i:l( R”_Di)z “

By substituting the GEM 10 rms coefficient error estimates in for sz
and S!’m in (3.15) the PSD of the deepest layer of Heller's model may
be adjusted so that (3,15) is roughly satisfied at low frequency,
Recalling that the reason for this exercise is to adjust low frequency
pole characteristic times, only 03 need be adjusted as this value has
. the largest effect on low frequency behavior while its influence dies out
at high frequency. A satisfactory match was obtained by reducing Qq
by a factor of 10. Figure III-2 shows the results of this change, %hus

the IHM (improved Heller model) parameters are the same as those given

in Table III-1 except that

°3 = 1,16 X 10-3 kme/sec4 . (3.16)
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The improved Heller model (IHM) was a necessary development in the

course of this research as explained above., To allceviate any confusion
in deciding which Heller model was used in the comparisons to come,

great care has been taken to clearly mark cach casc,

Thus far in the discussion all of the power spectral densities have
been based on spatial as opposed to time variation., In thc following
chapters, PSDs based on time will be required. The conversion from
spatial to time variation for a carrier vehicle with constantl velocity

simply involves the carrier speed as follows

E t t
°(W®) = b (w) xV, (3.17)
Note also the spatial-to—-time frequency variable transformation
S
W = w XV (3.18)

which will be used for consistency in writing various PSD expressions,
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Chapter 1V

APPROXIMATE REAL TIME FILTERS

In this chapter the basic theory for deriving filters for the estima-

tion of INS position and velocity error is presented, Gradiometer outputs,

and in some cases the externally obtained vehicle velocity measurement,
are used as inputs to these filters., Figure IV-1 shows a schematic of the
real time gradiometer application scheme which is simply added on to the

basic navigation loop shown in Fig, II-1,

Tie scope of this thesis permitted at most two gradiometer measure-
ments in-track or cross—track, The output signal of a single Bell RGG

with its spin axis vertical is

1 t
2(Yyy rxx) sin 20t + Tyy €08 2qt

where F is the gravity gradient tensor prior to differcncing with the ref-

erence gravity gradient, ( is the gradiometer rotation rate, and t is time,

After demodulation to separate the sine and cosine terms and differencing
the gradient components with the reference values, the following outputs

are obtained

and

where ﬁ is the difference gradient,

The navigation axes x and y to which the sensor is aligned are not
necessarily principal axes of the gravity gradient, In the plane of
rotation of the sensor the principal axes are at an angle with respect
to the x and y axes. If a phase angle is introduced in the equation
indicated by this footnote it would indicate the orientation of the
principal axes when the cross-gradient component is zero. Thus the
gradient can also be represented by an angle and the maximum difference
(Yyy - Txx) in the plane of rotation,

3 The outputs obtainable from a single spherical gradiomcter manufactured
by the Draper Iab, are dilferenl in form from Lhose ol Lhe Bell RGG,
It is an casy malter, however, Lo alter the analysis given in this
thesis to accommodate Lhe Draper gradiometer, An overview of the

operation and outputs of the spherical gradiometer is given by Trageser[15],

T
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A cyclic permutation of these subscripts gives the outputs for instruments
with spin axes aligned in-track and cross—-track respectively. Recall

from Ch, III that only the cross-gradients ny and Pyz can be used as
measurements cross—track and only the in-line gradients (Pxx' T

7.7

y’ T )
and sz can be used as measurements in-track, Thus to obtain two gradi-

ometer measurewents cross—track, two instruments are required with spin

‘ axes in-track and vertical, The in-line gradient combinations from these
]

same two instruments are used for in-track estimation. This allows flor a
full evaluation of how two gradiometers can improve horizontal navigation,
The best choice for a single cross-track measurement is Px because it

is more highly correlated with gy than is Pyz. For consistency the in-

e e+ . Sbn—

line output of this same gradiometer is used as a single in-track measure-—

ment,

Table IV-1 lists each of the measurement combinations used.

.a Table 1V-1
CROSS-TRACK AND IN-TRACK MEASUREMENT COMBINATIONS
Measurement Dilference
Combination Gradicent
Code Components
CT-1 [ny]
T
Xy
CcT-2
™
yz
7-1 (™)
i 17-2 T, * 1,10
. r + 1P
XX 17
IT=3
r_ar
xx 77
~21~
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The significance of each is given helow,

CT-1. This combination corresponds to using the cross—gradient out-
put of one Bell rotating gravity gradiometer (RGG) with its spin

axis mounted vertically. Because this tensor component is the

in—track spatial derivative of the cross—track deflection

it is the tensor component most highly correlated with g ,

CT-2. To obtain this set of measurements two RGGs are required,
The spin axes ol these instruments point vertically and in~

track respectively. The improvement over the CT-1 combina-

tion is small,

IT-1. Because the in-line gradients come from the Bell RGG linearly :
combined (c.g., far spin axis vertical 3(T"._-T )), T

XX yy o xx '
the most highly carrelated component with g is not directly
x )
obtainable. However, [or comparison purposes this fietitious

case of a direct rxx measurement is included.

IT-2, This case illustrates the situation where the direct in-line
composite output (modified by Laplace's equation) of one
vertical RGG is used as a measyrement, This is inferior

to the IT-1 case,

IT~3. 1In this situation the direct composite outputs of two RGGs
arc used where the instrument spin axes are vertical and in-
track. This combination is compgrable in informatjion to the

IT-1 case.

A. VELOCITY ERROR ESTIMATION THEORY

A-1 Excluding the FExternal Velocity Measurement

To obtain the measurcment combinations just discussed the basic

diflerence gradient vector required is




el

r 4.1)

The measurements may then be written as

myl myx5 Sxl mxl
z I ™ + € 4.2)

where E is the white measurement noise vector.
Let the estimated velocity crror be

. Ixm mx1 - -
Bv.(s) = w(s) z = w(s)[H el (4.3)

This vector requires only these five components because any single
channel output of a Bell RGG with axes oriented along the x, y, z
directions can be reproduced with these elemwents and the proper H
matrix, If all the elements of the gravity perturbation tensor are
required three orthogonal RGGs are required, These instruments must
be mounted so that a signiflicant component of gravity is perpendicular
to the spin axis of each instrument, This is necessary for proper
operation of the scale factor calibration loops.

i

PR _-— - - e e L A SR e IR PR B

S PR A, i i i ialihte, i W

where {(s) 1is the velocity error filter expressed in the Laplace domain,
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e m m e a4 A A —— S ————— - = o2 e i .

Note here that (4.3) is writtcn with subscript x indicating the in-
track direction., Because the basic INS error equations have the same
form ITor CI' Lthe velocity error estimation equations will be written IT
but are immediately applicable CT simply by changing the x subscripts
to y. Taking the Laplace transform of (2,5) and (2.7) and solving for

\'s rives
o x L4

sg skaV"
AV (s) = —=+ X (4.4)
(+) (+)
where
+) = 52 + ks 4 wz (4.5)

is called the positive Schuler factor and conversely, (-) will be used
to denote the negative Schuler factor (s2 ~ ks + ug). Subtracting (4.4)

from (4,3) the estimate error is

skbvm
sg x

SVx(s) = y(s)HD + ¥(s)e --(—;’y( Ty (4.6)

The PSD of SV‘(S) is then

t 2
@g (8)s
@:V (s) = W(-S)HWFﬁT(S)HTwT(s) + w(-s)RWT(s) - r:§-(:y-
x 4.7
9 Q/(-S)H'I-'t“g(s) of _ (s)H ¥ (s)
2 K4y X ,gxf:r
T AT T ve )
mym

where R is the PSD matrix of the white noise measurement error vector

(e). The object of this exercise is to minimize t+~ mean-squared estima-

tion error which may be expressed as

(4.8)




For ngv to be a minimum its variation due to any change in Y (s)
should bé positive. Substituting (4.7) into (4.R) and determining the

change in va due to a change in v{(s) gives

(s)s
""v———Jm<)£‘<>x 1v(s)
ok = m | eeshDntGon s -

sd ,(s)HT
=T
+{y(~-8) H® - s)HT + Rl 4 XP AVT(S)
rT =)

+ Aw(-s)[}mf_ (s)uT + R] L\tIIT(S) ds . (4.9)
Tt

Using contour instead of line integrals to evaluate the first two

terms in (4.9) yields

t
c, HIng(s)s
2, _ _L - “t T_ ,T N oL .
wl = § avi-s) [mﬁmmum]\; (s) - —— ( o
C. s+? ‘T(S)HT
L (gz. ( ot ( )HT+R+ gxl )AWT(S\ ds
Ty )Y 'S{ g S ] ﬁTT_‘ ’

jm
1 ' T T,
+ P S Ay(- )[H;\ I:r(a.)n + n]Aw (s) ds 4.10)
..J'or.

where the contours C1 and 02 are illustrated in Fig.

the left and right half complex plane respectively .

IV-2 and enclose

With these con-

tours it is easy to see, using the Cauchy residue theorem, that if

HI-T (s)s
. . lhx
1) [Hd»__ (s)H' R] ¥ (s) - (4.11)
T (+)
has no left-hall plane poles;
2) The integrands in (4.10) converge properly, (4.12)
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Then the contributions of the contour integrals in (4.10) is zero.

2 .
This means that Agév is positive since the last integral in (4.10)

is always positive and the minimization of GEV is assured,
X

Note from (4.11) that the poles of ¥ (s) must he determined either

by setting (4) = 0 or by setting

|H<I)f_T(s)HT +rl = 0.
N
Because of the inherent sensitivity of the INS to Schuler frequency
disturbances it will be assumed that the dominant poles come from the
Schuler factor (+). In addition, convergence in (4.12) requires that the

numerator of (s) be a well selected constant(s). Therefore assume

1 xm
1xm b
v{s) = @ (4.13)

As promised ((s) 1is of relatively low order, The approximate nature of
¥(s) comes from the "Schuler dominance” assumption which is made to de-
termine a. The idea is that due to INS Schuler sensitivity only the
Schuler frequency portion of the estimate error P35I, is significant in
contributing to UEVX‘ This is to say that the estimate error PSD is
highly peaked at or near Schuler frequency. With this assumption condition

~ t
(4.11) is enforced only at s = ng to give

-1
-T T T t (4.14)
= jw |H® j + : jw .
a J s[ (I )H R] o, (Juy)
M X

One way to indircctly show Lhe optimality of Lhe lilter just de-
rived is to prove the accuracy of the Schuler dominance assumption,

This may be done by substituting (4.13) and (4.7) into (4.8) where the
NI
"SV .
This value can then be compared (o the analylically devived rms estimate

gquadrature is performed numerically to give Lhe rms estimate error

error ogv obtained by assuming Schuler dominance. The degree to
X
N1 ; Al
which ngv agrees with ngv is a direct indication of the validity
X X
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of asswming Schuler dominance and an indirect indicator of filter optimality,.

e

To derive o;v begin by writing only those parts of (4.7) which will
X

have left-half plane poles if condition (4,11) is assumed satisfied across
the frequency spectrum, Substituting (4.13) into he estimate error PSD

thus obtained makes it possible to write the mean squared estimation

t T-T
s
o 9 (s)H a

|

|

i error as
l t 2 2 ' T
i "

| 9 1 § 1 lgx(s)s s"k"q, g,

ar =
- oV 27

; 8 IO 00 @G

ds . (4.15)

The integral in (4,15) may easily be evaluated using the Cauchy residue

theorem if the Schuler portion of the estimate error spectrum is again
assumed to be dominant, Under this premise and substituting (4.14)

into (4.15) the mean squared estimate error becomes

1 2
i . C1 sz + wzk q
04“ _ 1 § ] 8 2 ds
v = 2m3 (4.16)

X ' (+) (<)

ﬁ where B 1is the a posteriori gravity error spectrum defined as ]
1
L L T t T 1t
B ey =i e I e (e IR HOR (Jw ) . (4.17)
g s I s TTT 8 8, s :
X z .
X
Then the Cauchy residue evaluation of (4,16) yields
kq
2 B 2
Og, T ) (4.18)




A-2 Including the External Velocity Measureuent

Using the combination

m
T A T B R (1.19)
x X x
as a measurement,

~ Ixm mx1
W o= ws) z oWt (s)(sim - wv')':) . (4.20)

X

The estimate error is then

Sy

§Vx(s) = ¥(s)HD + ¥(s)e + ¢(s) TI§ - [140(s)-d(s) ?%T]kvz (4.21)

where

o(s) = y'(s) -1 . (4.22)

It follows from (4,21) that

, r B

{ V(s) 0 .

i rzf;-vx(s) = [y(-s)50(-s) W] te 2 ?*‘(1*“’(5)""(5)(77)“2
L os) 775_"2’) (4.23)

where [Wﬂ is the estimate error characteristic matrix defined as follows

t T .
1 _(s)H + w) Hd‘%g (s)s/(+)
rr X
(w] = o (4,29)
R T 2t 20 2.2
-su’ :T(S)H -s ”g \s) (s n;‘ a.
A X
) (+) (=)
-
-
-29-
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From Section A-1 recall that the coelficient of [y (-s); $(-s)] in

(1.23) must have no left-half plane poles if Uﬁv is to be a minimum,
For this to be true the denominators of §(s) and d(s) must be the left-
half plane roots which result from setting the dcterminant of [Wl]

cqual to vero, Anticipate that the product of these roots results in a

second degrece polynomial of the form

(+') = 52 + k's + wz (4.25)

where k' 1is a shifted value of k used in the filter. To determine
the value of k' the determinant of (4.24) is set equal to zero

the region where

2 + k's + wi = 0 (4.2€)
or
2 4 wj - =k's (4.27)

For the determinant of [Wﬂ to equal zero in the Schuler frequency region

the following condition must hold

.2 2,2 2 t . -1
(s” o) a, = wsﬂwgr (jw )[H+--T(JMS)HT+R]
Ex *® rr
2.t
x b Ciwon v eit (ju) (4.28)
=T "8 S'g s
gl X

where (4,28) is obtained from reference to the identity

1 -1 -1 -1
Q 0 Q1 Q, 119, Q,Q, Q, 0
_ (4.29)
T -1 T T -1
-Q,Q, 1jle, QiLo 1 0 Q3-Q,Q, Q,
~30-
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where Ql’ Q2, Q,3 represent the corresponding quantities in [WI]_

It is clear that if the determinant of (4.29) is ecqual to vero then

Q3 = 02 Ql Q2 . (1.30)
Substituting (4.27) into (4.28) yields the following valuc for k'

B
w2 . B (4.31)
9

Continuing with the filter derivations, for the coefficient of
[y (~s); ¢(s)] in (4.,23) to have no left~half plane poles, the (+)
factors in the second column of [Wl] must be cancelled by the numerator

of &(s). Therefore assume

PORE O (4.32) 4
+")

Substituting (4,32) into (4.21) gives

ng sk'hvz

a”vx = y(s)HD + ¥(s)E -

(+')  (+")

(4.33)

which is identical to (4.6) except that k' is substituted for k., From
this point on the analysis is the same as in Sect, A-1 resulting in the

following equations

¥y (s) = OB (4.34)

4
-1
P t
aT = jws [HQ‘:;_T(.H:)S)HT + R] Hd‘i.‘ , (.j(;_s) (4.35)
m Bx
and
X1 '
‘J"(S) = k +'k = . (4.36)
31—
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‘Fhe analytic and numerically integrated estimate error expressions
are also the same as those in Secl, A-1 except for the change in k. The

analytic cxpression may be written

AF |2 B X9, (o0
(0'(_) ) = m + > = ' qu (4.37)
; s AF 2 R
Note that this is the same (ogv ) without the external velocity meas-
X

urement provided that k 1is optimized for the mean squared estimation

error,

B, POSITION ERROR ESTIMATION THEORY

In contrast to velocity error estimation, position error estimation
requires that the low frequency, as well as the Schuler frequency, por-
tion of the estimate error spectrum be considered, This is a consequence
of two facts, First the high frequency content of the spatial gravity
perturbation spectrum falls off quite rapidly. This is described in the
Heller model as an exponential decay, This results in the error contri-
bution from the narrow bandwidth centered at Schuler frequency becoming
ever smaller, for decreasing carrier vehicle velocity, when compared to
the low frequency spectral content, The second significant observation
is that the gravity perturbation spectrum just described is integrated
only once to give velocity error but it is integrated twice in the posi-
tion case, The low frequency error contribution is therefore much more
important to position error estimation, This fact is reflected in the
{following assumed form for the gradiometer measurement position error

filters,

v(s) = ws(s) + wt(S) (4.38)

where the s and ¢ indicate Schuler and low frequency portions of the
tilter, The transfor functions ws(s) and wz(s) may always be deter-
mined independently of one another if certain logical assumptions are

made. These assumptions, to be discussed in the next section, concern

the relative size at low f(requency of terms contributing to the estimate

crror,
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B-1 Schuler Frequency Filters (In-track or Cross-Track)

As with velocity error estimation, the Schuler portion of the posi-
tion estimation equations will be written in-track but are immediately
applicable cross—track by changing the x subscripts Lo v. To estimate
position error, first without the external velocity measurcment, begin

as in the velocity case with

7 - HD+ e (4.39)
and

AR () = g (s)7 . (4.40)

The estimate error and estimate error power spectral density can be

written as

g kav"

AR (s) = (T + y(s)e - (—f) - —= (4.41)
+)
and
®; (s)
°£h (s) = (-s) rH®E_T(s)HT + R]WT(S) + X
PR, T (=) (4,42)
2 \lr(-s)uasE (s) ot (s)HTvT(s)
Te —T
k a, X ng
+ - -
("‘)(—) (+) (_)

Following the same reasoning as in velocity error cstimation, to

2
minimize o~

SR \
x :m#& ()
t T T X
[HO_ ()N 4 R (8) = ———— (4.43)
m (+)

~-33-~




e S o oo

must have no left—-halfl plane poles. Focusing attention now on Schuler

frequency by assuming that wz(ng) is very small compared to VS(qu)
(1.13) may be rewritten as

L
"°§g (s)
t T
fH¢__T(s)H + R}yq(s) - (4.44)
T ) (+)

The position error estimation equivalent of (4.12) dictates that the

numerator of mq(s) be at most linear.

Therefore a first-order factor
is used in the numerator of Wg(S) while the same Schuler factor is
used in the denominator to yield

1 xm 1xm

b
¥ (s) - —=* €
s

. (4.45)
(+)

Substituting (4,45) into (4,44) and assuring no left-half plane

poles at the roots of (4) gives

T - - t
[Hm__T(ins)Hl 4+ R](hrs + cr)| = H¢fé (st) . (4.4¢€)
m S=- % +J (.US x

From (4,46) both b and ¢ can be found,

The mean-squared estimation error comparisons are accomplished using
the basic formula

2 1

t
Ughx STy § ¢éhx(5) ds , (4.47)

Then ngi is found by substituting (4,45) and the as yet undetermined

ml(s) into (1.38). Now the complete y(s) 1is used in (4.42) so that




the quadrature in (4,47) may be numerically evaluated. There are two
distinct parts to the analytic lormula for rms position estimation errvor,
one from the Schuler frequency disturbances and one from Lhe low fre-

quency disturbances expressible as

AF AF AF
Ugi{ (OSﬂ ) B (OF—;R )ll . (4.48)
X X s X

These are found from substituting W (s) into that portion of (4.42)
that has left-half plane poles, after (4,43) is satisfied. Using (4.42)

modified in this manner as the integrand in (4.47)

T
ot (s) 2, 0" (N (s)
g q2 r T—‘T 8
2 1 x Ex g
o = -+ -_ S
3 2 § - -
3) x J (+)(=) (1)) =)
t T
[} T(S)“ \Irr(s) (4,49)
g T 4
- 1 § X ds
2 -)
where the first integral represents
A¥F 2
(0‘6)“ )S x (2nj)
X
and the second
Al (2 .
(”.QR )L ¥ (=2nj) ,
X
-30—-
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Using (4.45) in the Cauchy residuc evaluation of the first integral

in (4.49) gives

kq
AF 2 B
(04 ) = + —2 (4.50)
5 . 2 2
X s 2kw 203
s s
. . AF 2 2
where this expression is equal to (oﬁv) in (4.18) divided by ws. This
X

is a standard form for the Schuler mean-squared estimation error, The
form for the low frequency counterpart to this quantity, however, has
no such standard form but varies with the number and location of low

AF
v~ ) will be derived
BRy 2
on an individual basis for the measurement combinations specified in

frequency poles. For this reason the quantity (

Table IV-1,

The external velocity measurement may be included as a2 measurement

~
by writing SRX as
~ -— m
B8R = vis)z + W'(S)(SBRX - SVX) (4.51)

which gives an estimate error equation of the form

_ _ P(s)g
() wCHD 4y ()7 4 x . [“"‘S’ - k“‘("’]av‘“ (4.52)
X X
(+) s (+)
where
h(s) wr(s)s = 1, (4.53)

Writing the estimate error power spectral density for the position error

in the same matrix formal as was usced in (1.2 ) yields

- 36~




w(s) 0

1(___1+Ms.>._ _M)q
Ogp () = [w(-s)- M‘-“’] [¥,] * szw: sAS w /1?7 (4.59)
x o(s) -3 .,
s (=)
where
t
Hd= (s)
-t T ng =
HO_ . (s)H 4R
m +)
1 - ) (4.55)
[w,] . .
¢r ﬁT(S)H @F (s) (qz ’2)2
Fx Fx _ g q
- 2 2
) ) = P 2

Reasoning identical to that used in Sect, A-2 yields the following Schuler

frequency form for o&(s):

sy - o ) 6e
d(s) = G - (4.5¢)

Notice that the low frequency behavior of (4.56) gives

2| SN (4.5%)
small s

This results in highly desirable behavior because it minimives the con-
tribution of the 1 + #(s)/s term in (4.52). This term, for small s

and »(s) # - 1, might be very large even for reasonable levels of
external velocityv measurement noise. Thercfore it will be assumed that the
5V$/s term in (4,52) is large at low frequency making 4 (s) - - [()/(+"N

an ideal choice at both low and Schuler frequency.

Substituting this value for M(s) {into (4.52) viclds

m

I k'sv
SR (5) - wONT 4y (s)7 - —(-,’.‘—) - T")( (4.583

-37-
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which is identical to (4.41) except that k 1is replaced with k',

Therefore

hs 4+ ¢

+') -

WS(S)

where b and ¢ are determined from the condition

t T ~T T t .
MHe__(Gw )IH + R](b s+c) = “¢ka(3ws) . (4.59)

i T k'
! s==g +ju

The estimate error PSD is expressible as

o )2

t T T X 2

$) - w(=-s)[H . _
| @gkx(s) W (=s)[ ¢FFT(S)" + Ry (s) + GOED +(+')(")
(4.60)
yesol () a° sy (s) i
gx g T
- _ X
+") ")
where

: -" = 82 - k's + ui , (4.61) 1

AF N
and "ﬁh and oﬁi are determined as previously explained except that
x
again k¥ is used in place of k. The resulting Cauchy residue eval-

kY

. A¥
uation of (ogh‘)S gives

2k 11'2
S

2

where again this expression is related to (ogv ) in (4.37) by the

. 2
factor w .
s
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In the next two sections the various forms for wz(s) for the
cross—track and in-track directions will be found. These lilter forms
will be constant whether or not the ecxternal velocity measurement is
used as a measurement, This is a direct result of choosing #(s)

in (4.56) which gives

as

¥(s)

n
]

(4.63)
small s

Simply stated the external velocity measurement is assumed to add very
little low frequency information and therefore does not change the low

frequency part of the gradiometer measurement filters.

B-2 Low Frequency Filters, Cross=Track

The reason for the low frequency filter variation from cross-track
to in-track is solely a manifestation of the assumed low frequency

forms for og (s) and ¢g (s} from the Heller model. The low frequency
x y
PSD (power spectral density) matrix in (3.11) transformed to a time

variation is

~ e
C 2 c B
—kls 0 kzs 0 -sts
c B
0 2k, 0 -6k, 0
t.. -LF c C B (4.64)
[M]I_D =] -k s 0 2k, 0 -6k, .
B A
0 -6k, 0 24k, 0
B . B A
2k, 0 -6k, 0 24k,
- -

C
where kJ’ kj’ and k ar. low frequency time spectral density coefli-

J

cients defined as
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] E=D (4.65)
X
B k;
k. = . (4.66)
J V(5—.1)
X
c ks
kK, = —1— (4.67)
J y (4=
X
and
~ t (4.6€8)
s = jmx . .

From (4.64), & (s) and & s) are of degrec two and zeru, respectively,
L',\' L\y
This difference ultimately produces low frequency filters of orders two
and one, This means that the results from this and the next section are
applicable to any other gravity perturbation model whose low frequency
behavior for o (s) and & () matches that given in (4.64).
LX Ly
The cross—-Lrack low frequency filter derivation begins by writing

(4.43) for small s, Then

H¢5 (s)
. T
fn®:_T(s)Hr 4 I{}yl(s) - ""{%l"_ (4.69)
rr “s small s

must have no left—hall plane poles, To satisfy (4.69) it is immediately
T
clear that the denominator of wl(s) must be the left-half plane roots

of

1
o

t T
o__ () il | (4.70)

™ small s

In the cross-track dircction this resulis in a single real root annotated

s - =B, (4.711)

¢ e e A+ ————— v -




To assure that the low frequency peak in the estimate crror spectrum

dies out at the upper end of the low frequency range, the numerator of

wl(s) must again be a well chosen constant(s)., This is equivalent to

satisfying the position error est mation equivalent ol Lhe convergence

condition in (4.12), at low frequency, Therefore wl(s) has the form

1xm
Y

\kz(s) ::f:—g

(14.72)

. e et S ———r—— e # A" et

; To find O note that (4.69) must not only be without left-half plane

poles but to assure convergence

=T

T 1
[m’i.’r(s)“ ] (; -
T

t
H = 0 4,73
? ! Tg ( )
s

{
"1arge s"

where the quotes indicate "large s" in the low frequency range. Note

also that (4.73) is applied only to the higher powers of s, It may be

t . 2 t
.. s has a dominant s term and that &= s) has
! assumed that @rﬁT( ) T1gy(

a dominant s term when estimating position error cross-track., To

reduce (4,73) to one nontrivial equation using these lacts, write

SZ®E_T(S)
o () —IL (4.74)
T 2
b= (s) - s (%) (4.75)
Tgy ng

where the primes indicate dilferentiation with respect to s, Note that

(4.74) and (4.75) only hold for the highest powers of s, Substituting
(4,74) and (4,75) into (4.73) yields

£ R ta ol A

—A1-
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v ™o L 4
% L o & - - oz () ] “.
e “s y "large s"

From (4,76) onc component of o may be found.

be found by cnforcing (4.69) at the low frequency pole. This relation—

ship is

fkl«bt_,r(s) o1 = 0. (4
T Se—f

Al
Recall that to calculate (o~ )

v

this last integral in (4.49) must be

evaluated, Using the Cauchy residue theorem to perform this quadrature

AF
gives no standardived form as was the case for (aoR )g, primarily be-
x

cause @g ?T(S) is a function of s  at low frequency. Because of this
X

and the nontrivial nature of the low frequency filter constant determin—

ations, detailed derivations for the in-track and cross—track low fre—

quency [ilter constants are given in App. C, These derivations apply

to measurcment combinations listed in Table IV-1 and include the result-

. . . AF ‘
Ing detailed formulas for o
¢ as fo (anx)z

WY T

76)

The other components mayv

L77)
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B-3 Low Frequency Filters, Iun-Track

The denominators of the in-track filters are again found I'rom (4,70).

For the assumed second degree form of Qr (s), however, the left-half
X
plane roots, after some approximations explained in App., C, turn out

to be a complex conjugate pair expressed as the factor (£+). The exact
location of these poles vary with the exact measurement combination used

and are given in App. C. The low frequency filters can be written as

o
pad
3
ot

olx
3

v, = s + e (4.78)

(24)

where the first-order numerator satisfies convergence at low frequency

while ensuring sufficient estimation accuracy. The convergence and low

frequency pole conditions (Sect. B-2) are used to find d and e. These ;

conditions are stated below for the in—-track direction

=T -T
1 t
ot (o 1 L2 gl (s) - o, (4.79)
~=T 2 T'g u "
T () g X large s
and
t - -
[HoY (I 4 RY (@'s + o) - 0. (4.80)
- FFT s=-roots
of (12+4)
The details of finding d and e are again peculiar to the particular ?

measurement combination considered,

C. LOW FREQUENCY FILTER RESULTS

The results (rom the low frvquvncy filter derivations in App., C

are given in Tables IV=2 and V-3,

-13-




Table IV-2

T & o

LOW FREQUFNCY FILTER RESULTS
(CROSS-TRACK MEASUREMENT COMBINATIONS )

CROSS-TRACK 1

CROSS~TRACK 2

7z - € U\xy] xy
T
y2
o1 0 0
H [0 1 0o o o] [ 0 ]
0 0 01 O
rl 0
R r
1 0 r
2
A
1
r\E r-l(r2 + 24k5)
f 2™ A A A2 A
3 (48k3k5 - 36(k4) + 2k3r2)
A
v Yo
o4 —— ) A
2
W w (1»)5(241«5 % rz)
B B
2 2k1309 2k3cvlﬂ + 6k A
( AF ) 3 -
o 3
[N\)
utv W s

These measurcwent combinations assume the state vector defined

in (4,1)

diiioias, ke o Ny

A




Table IV-3
LOW FRFEQUENCY FILTFR RESULTS

(IN-TRACK MEASUREMENT COMBINATIONS)
{ IN-TRACK 1 IN-TRACK 2 IN-TRACK 3
1
[ ™ + .lT"
I - - 1 XX 2 77
z- ¢ (rxx) [T\xx + 5 r"/.'/.] 1
f =T + T
: 2 xx 2.7
!
l> i 1 0 0 0 =
D H |[1 000 0] [1 0 0o o %]
P 1
' ) 0
‘ R rl 'l S
0 r
2
1
j A l Z
f 4k 4 (_gl A A 3,.A2 5 A )
L < > . 4 > klk.’) 4 2(k3) + 4klll
r
1 A
E_' (30k5 4 rl)l'1
- 4v
d Vx Vx < X, _ 2Vx
2 s 312 32
w w s s
S s
8V 4V
z 2vx 2wN;,1vx < X - X >
! sz wz 3Lw .&LmS
' S s
: B, 3 . 3 2 2 2
3' —k, de [251—281824251(81 .,2)]
| AF \2 2kB B 2 2 2 2 A A
% 1° | + koee (285 4 (87 - 80)] 2 ("2 73
SR 55 1 1 1 2 S|l -—
X z w L Q) I 1.
: s B B2 "
- 2k deR. + k, e/w.
! 3 1 3 s
!
These measurement combinations assume the state vector delined in (4,1)
—45-~




Note thal to obtain the total analytic position error variance
formula for any of the combinations in these tables (4,50) or (4.62)

AF .
should he added to the appropriate formula for ((7.&-‘ )2.
x £




Chapter V

REAL TIME FILTER COVARIANCE STUDY

A, COVARIANCE COMPARISONS OF KALMAN VS APPROXIMATE
FILTERS FOR THE CROSS-TRACK DIRECTION

In this section the second-order gravity model is used in a standard
Kalman covariance analysis, A comparison is then made wilh the covari-
ance results obtained from the previously derived approximate filters,

The cross-track direction is chosen because the low frequency behavior

of the second-order model is similar to that of the Heller model QE (s)
The cross—track gravity perturbation power spectral density from y
the second-order model is
q
t 1
o (s) = . 5
2 2,2 (5.1)
Ey (s” - B%)
From this rational expression it follows that
q
t s 1
o (s) = -x(—L—5) . (5.2)
F & v 2 2.2
xy"y x \(s" -p7)
2
4 (s) = S—x( O ) (5.3)
- T = T2 2 2.2/ 5.3
Xy xy v, (s -p7)

The Kalman state space representation is obtained by combining (2,€),

(2.8) and (3,3) as follows:

47—




X ! X G w
- pm— r— -
r-x 7 Ey} o 0 07 xT 1 0
1 1 Wl
& T -3 0 0 3 0o o
v f Ly . u .
& = 2 . '5"
SV [\ 1 -k -w sV 0 Kk y
| y s y ,
B8R 0 o0 1 0 5R 0o o0 (5.4) -
Y L J Ly — o
i
E where
; X - state vector
? F - state transition matrix
: G - process noise transition matrix
w - process noise vector
The measurement is assumed to be
f - -
v, = H X + €
- ok B
= -f3 +
P L1 B0 0] X, v,
g (5.5)
y
to)'s
y
5R
- Vo
where T is the pgradiometer crror, Il the external velocity measurement
is included
1 - o o)fx, nv
- 1
7 - + -
0 0 1 0 e L n
y -5Vy (5.6)
SV
y
;')R
- Y -

| i The first measurement, herc, is obviously &v which can be written




& = r v (5.7)

l which comes from the following identity

: r
. g xxvx
Tev=1»|z|= |ryv . (5.8)
y Xy X
’ éz szvx
! vV =V =0
i y z

Comparison of the measurement noise in (5,6) and the process noise in
(5.4) shows that the two are correlated, The standard Kalman filter
covariance analysis can still be made by deriving an equivalent system
described by Bryson and Ho [Ref, 16, pp. 371 and 402-404] where the
process and measurement noises are not correlated, The general form

J for the equivalent system is

X = F'X +G'w' + Dz (5.9)
|
where
T -1 , -
D = GTR (so that the noise in (5.9) is uncorrelated with ¢)
(5.10)

F' = F - DH ' (5.11)

G' = I, -p (5.12)

- w

v 3 , | .13

- -T

T8(t - 7) = EHe(t) w(7)] (5.14)
1 - The specific form for these equations using the unaltered measurements
: glven in (5.6) is

g A9~
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D

(5.16)

(5.17)

-W

(5.18)

Gl

(5.19)

vm

y

i\

X
.:‘“"'; o
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i

Equation (5,7) shows that using ny as a measurement is equivalent

to the use of éy' This means that the covariance results obtained by
slightly modifying the CT-1 formulas in Chapter IV can be compared
with the covariance results from the foregoing Kalman configuration,
Because the low frequency behavior of ® (s) is different for the

second-order model (SOM) and Heller model” (HM) as follows:

HM

C
d>t (s) = 2k (5.20)
g 3
y small s
SOM q
ot (s) - 1, (5.21)
g 54
y small s

the low frequency root from (4,70) is

vielr\B
8 = (—x——l> (5.22)

R
The value of O found by substituting (5.2) and (5.3) into (4.76) is

= =X
a = 5 (5.23)
w
S

The analytic low frequency variance formula is altered to give

AF \2 a,* B _

agh = T - (5.24)
o)

y/4 B vx s

The previous results for the determination of 5, B, and ¢ remain unalt-

ered as do the variance formulas except that the spectra in (5,1), (5,2),
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and (5,3) are used in place of those from the Heller model,

There are primarily three questions to be answered concerning the
real time approximate filters: (1) How optimal are the approximate
filters? (2) Over what range of carrier vehicle velocities can these
filters be used? (3) What measurement combination produces the most
accurate estimates of position and velocity error? Tables V-1 through
V-4 seek to answer the first two questions by comparing the Kalman filter
rms estimate errors with these same quantities resulting from use of
the approximate filters, The assumed second-order model and inertial
navigation system quantitative characteristics, taken from Heller [10]
are as follows:

n

sV 0.2 percent of Vx - band limited white noise with

¥ (5.25)

a two second correlation time,
-7

q: = 1,4466 x 10 m2/sec4 (5.26)

y

—~5
k - 7.5 x 10 1/sec , (5.27)

Because the Bell and Draper gradiometers are accurate to approximately

1 EStvos, this would seem a realistic value to use and, in fact, all of

the results in this research assume a gradiometer with this accuracy,

In addition, the gradiometer is assumed to have a 10 sec averaging time,
This determines the pgradiometer measurement error power spectral density

necessary for computation of the Kalman filter,

Looking at Tables V-1 to V-4 the most important results appear in
the rms estimatce cerror columns, As explained earlier the dominance
assumptions made in the filter derivations may be directly checked (which
indirectly checks optimality) by cowparing the analytically and numerically
obtained rms estimate error values, The last two columns of each Table
contain these numbers, A comparison of these values shows that nowhere
do they differ by more than 6% and routincly differ by less than 1%,
A direct check of optimality may be done by comparing the Kalman filter
estimate error results in column 2 with the numerically integrated values

in the last column, The fact that these values also agree to at least 6%

=52~




and routinely to less than 1% provides direct confirmation of approximate

filter optimality,

Although the data in these Tables look very promising it must be
remembered that a rational second-order model was used. The primary
purpose of Tables V-1 through V-4 is to show that confirmation of the
dominance assumptions made in the approximate filter derivation coincides
with a near optimal filter, From this point on then, confirmation of
these dominance assumptions will be considered sufficienf proof of near
optimality since direct Kalman comparisons are impossible when the Heller

Model is used in the next section.

Table V-1

VELOCITY ESTIMATION COVARIANCE
COMPARISON (E/EVM)®: KALMAN VS APPROXTMATE

KF = Kalman Filter, AF = Analytic Por}n\lh, NI = Numerically Integrated

Kalmsn
Carricr Filter Approximate Filter Results
Velocity | Results
l(n/sec) X - AP w1
& . ov T
y y ¥y
(un/sec) (m/sec) (wm/sec) (om/sec)
0.5144 0.1079 0,514 0.1079 0.1066 1
5,144 1,079 S.14 1.079 1,076 1
51,44 10.79 51.4 10,78 10.77 '
1514.4 103,38 472.4 103,43 103.16
:
* Excluding the external velocity measurement (EVM)

Table V-2

VELOCITY ERROR ESTIMATION COVARIANCE
COMPARISON (I/EVN)®: KALMAN VS APPROXIMATE

Kalman Approximate Filter Results
Carrier | Filter
Velocity| Results GA.J" q-‘.l
KF % . &N
(m/sec) aér(mm/scc) . x o, .
v’ (m/sec) (1/sec) (a/sec) (e/sec)
0,5144 0,0511 0.514 6.316\-‘ 0.0519 0.0443
5,144 0,5118 5.14 6.:!16\.4 0.5196 0.4807
51,44 5,118 31,4 6.376\-‘ 5.196 4.88
5144 30,06 472.4 e.n™? 50,86 ar.n
'l/svn = Incluting the external velocity measurement
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Table V-3
POSITION ERROR ESTIMATION COVARIANCE
| COMPARISON (E/EVM): KALMAN VS APPROXIMATE
‘ ! KI' = Kalman Filter, AF = Analytic Formula, NI = Numerically Integrated
é Kalman 3 ,
F Carrier Filter Approximate Filter Results
Velocity Results —_ - - AF NI
i ~ ~
’ K )] [ a UOR UOR
4 (m/sec) v (mm/sed) y y
| y (m-sec) (m) (m-sec) (m) (m)
] = 5
; 0.5144 9.79 —3.35%° | —2.51\! [ 3.35M 9.79 9.79
‘ 6 2
5.144 17.4 -3.35% -2.51N° | 3,358 17,44 17.43
7 3
51.44 32.04 —3,35\ —2.51\ 3,35\7 32,17 32.11
4 8
514.4 96,95 03,074\8 —2.12\ 3,35\ 99, 87 97,82
{ |
1
3
E ' POSITION ERROR ESTIMATION COVARIANCE
COMPARISON (I/EVM): KAIMAN VS APPROXIMATE
Carrier Kalman Approximate Filter Results
Velocity | Filter
Results l-) p C—l ' Q_F NJ
Ki ' Ton GURV
(m/sec) TR (m—sec) (m-sec) (1/sec) y ’
y
(m) (m) (m) (m)
0.5144 | 9.23 [-2.646"° | 1,68\ |2.646"° |6.376V 4 | 9.238 | 9.2m )
5,144 | 16,41 [-2.646 % [ 1,687 | 2,646\ | 6,376V | 16.43 | 16.42
7 4 7 -4
51,44 29,31 |-2.646\ | -1.687\" | 2,646\ | 6.376 "% | 20.45 | 20,39
5 -4
514.4 59.08 [-2.476¥" | =1.380\° | 2.646\® [ 6,110 €3.47 | 61,61
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B. SINGLE GRADIOMETER MEASUREMENT ANALYTIC
VS NUMERICAL COVARIANCE COMPARISONS

The next step in proving the accuracy of the approximate filters is
to show their near optimality when the more realistic Heller model is used,
This is done by making the same type of comparisons as in Scct, A but with
the following changes: (1) The Kalman covariance is excluded; (2) The
exact formulas for Ch, IV are used- (3) The IT-1 measurement combination
is included., The impetus to improve the Heller model came from studies
done in this section, Therefore all the comparisons in Tables V-5 to
V-12 were done assuming the BHM (Baseline Heller Model), 1In addition
these data also assume the EVM (external velocity measuremwent) noise and

the value of k as defined in Sect, A.

The primary focus in Tables V-5 through V-12 is the agreement of the
rms estimate error values in the last two columns of each Table, As with
the preceding Tables in this Chapter these numbers agree to within 6%
for both velocity and position error, with the exception of the lowest
velocity case, in all of the velocity error Tables, This is due to the
fact that the low frequency portion, as assuwed, of the estimate error
powver spectral density (PSD) is dominant. The exponential decrease in
the Heller gravity perturbation spectrum results in very small gravity
perturbation PSD values at the short spatial wavelengths corresponding
to Schuler frequency at low speed which in turn causes the low frequency
dominance, In order for the velocity filters to be meaningful at low

velocities some form of low frequency compensation would have to be in-
cluded,

By comparing the data which includes and excludes the external vel-
ocity measurement, it is possible to determine the impact of using this
potential data source, The rms estimate error values in rable V-7 vs
Table V=8 and Tahle V-11 vs Table V-12 show that the external velocity
measurement contributes little to enhance position crror estimation.
Conversely Table V-5 vs Table V~6 and Table V-9 vs Table V-10 demonstrate
that an average increase in accuracy of 50% is possible for velocity

error estimation,

L e 2o o ———— s =
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Table V-5

IN-TRACK VELOCITY ERROR ESTIMATION COVARIANCE
‘ : COMPARISON (E/EVM): ANALYTIC VS NUMERICAL -

A¥ = Analytic Formula, NI = Numerically Integrated

)

S Carrier Velocity 3 AF Gil

} g va on

i (m/sec) (m/sec) (mm/sec) (mm/sec)

? 0.5144 1,985\ 21 0.0126 7.098

5,144 5,144 1,078 1,078

51,44 51,43 10,78 10,78
514.4 470,0 103,16 102,89

! Table V-6

IN-TRACK VELOCITY ERROR ESTIMATION COVARIANCE
COMPARISON (I/EVM): ANALYTIC VS NUMERICAL

[}
|
f
t
!

Carrier 3 K AF NI
Velocity Tov o8V
x x
(m/aec) (m/sec) (1/sec) (mm/sec) (mm/sec)
- Ad \, —-—
0.5144 1.985\ 21 3.96> 1 a2N? 7.098
| \-1
5.144 5.144 6,376 00,5196 0,493
~ < ame\—4
31,44 51,43 6,376 5.195 4,93
\—4
514.4 470,0 6,095 50.8 47,€2
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Table V-9

CROSS~TRACK VELOCITY ERROR ESTIMATION COVARIANCE

COMPARISON (E/EVM):

ANALYTIC VS NUMERICAL

Carrier
Velocity a G@? ﬂNI
°Vy va
(m/sec) (m/sec) (nm/sec) (mm/sec)
0.5144 2.257\"23 0.0126 4,088
5,144 5.143 1.079 1,077
\1
51.44 5.142 10.78 10,77
\2 ’
514.4 4,926 105,58 105,53
Table V-10
CROSS-TRACK VELOCITY ERROR ESTIMATION COVARIANCE
COMPARISON (I/EVM): ANALYTIC VS NUMERICAL
Carrier
- AF NI
1] ~ ~
Velocity a k St o5y
y y
(m/sec) (m/sec) (1/sec) (mm/sec) (mm/sec)
0.5144 2,575V 23 4,51\ 18 1,382V 4,089
‘ -
5,144 5,143 6,376 0.519 0.493
51,44 5,142\ 6,376 % 5.195 4.965
514.4 4,926\2 6,242 51.39 50,98
-59-
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The IHM (improved lleller Model) was developed after noting the
excessively long characteristic settling times associated with the low
frequency filter poles for some of the cases studied in this section.
To best see this problem, Table V-13 catalogs these settling times for

the CT-1 and IT-1 (cross—track and in—-track) measurement combinations,

Table 13
LOW FREQUENCY POLE CHARACTERISTIC SETTLING TIMES FOR THE BHM*
Carrier CT-1 IT-1
Velocity Settling Time (days) Settling Time (days)
(m/s) /B (1/L)
0,5144 1647 176.9
5,144 52.1 9,95
51,44 1,647 0,56
514 .4 0,052 0,0315
BHM = Baseline Heller Model

Note the settling time of 1,647 days even at 51,44 m/sec,

The most desirable way to deal with this problem is to update the
low frequency knowledge of the gravity field thus reducing the low fre-
quency residual in the Heller gravity perturbation model, This is pre-
cisely what was done in Ch, II to obtain the IHM, The updated character-

istic times for the IHM are shown, along with the values for the BHM in
Table V-14,




. et ot

Table V-14

LOW FREQUENCY POLE CHARACTERISTIC SETTLING TIMES FOR THE IHM

Carrier
Velocity cr-1 IT-1
Settling Time (days) Settling Time (days)
(m/sec) (1/8) (1/L)
*
0.5144 1157,74 (1647) 106,995 (176.9)*
5,144 36.612 (52,1) 6,017 (9,95)
51.44 1,158 (1,647) 0.338 (0,56)
514.4 0.037 (0,052) 0.019 (0.0315)
*
numbers in parentheses indicate BHM values

There is some improvement shown in Table V-14 but in the low velocity
cases the times are still inordinately long,

C. LOW FREQUENCY POLE PLACEMENT TECHNIQUE

There is another way to decrease the settling times but it is less
advantageous because acceptable filter performance is balanced against
estimation accuracy, This simply involves moving the low frequency poles
to the left on the negative real axis to a point where the time response
is acceptable, These new pole locations are nonoptimal, thus
degrading estimation accuracy. The hope is that estimation accuracy
sensitivity to low frequency pole movement is small, Table V-15 shows
this relationship for a velocity of 51,44 m/sec only, The results for
5,144 m/sec and below indicate that the extreme root relocation necessary
to give acceptable low frequency behavior produces an unacceptable
degradation in estimation accuracy, At very high carrier velocities

the low frequency settling times are already on the order of hours or

even minutes and do not requirc scvere adjustment,
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Note that for the cases where the EVM is excluded the estimation accuracy
is degraded by a factor of 2 to 3, When the EVM is included the de-
gradation is at most 20% and may be as small as a few percent, Therefore
pole shifting may be a reasonable way to hasten filter convergence

particularly if the EVM is included as a filter input,

Another way to see the effect of the pole shifts is to look at plots

of the estimate error PSDs (power spectral densities) for approximately
optimal and suboptimal pole locations, Figure V-1 shows these PSDs

for the IT-1 measurement combination excluding the EVM assuming a

carrier velocity of 51,44 m/sec. The low frequency suboptimal PSD is
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much greater than the same portion of the approximately optimal spectrum

while the same Schuler peak is produced in both curves,

D. MULTIPLE GRADIOMETER MEASUREMENT ANALYTIC
COVARIANCE COMPARISONS

Up to this point only the CT-1 and IT-1 measurement combinations
have been explored, Do the other combinations provide significant im-
provement over the single, pure gradiometer measurement cases? This

question is answered in Tables V-16 through V-29, The covariance data

in these Tables was all obtained from the analytic formulas using the

[HM. It was deemed unnecessary to show numerical corroboration since ’
the optimality of the approximate filter technique has been shown in
the preceding sections of this chapter, The lowest velocity ~ase is

omitted for velocity error estimation because approximate filters are

not optimal at such low speeds, as explained in Sect. B of this chapter,

The most significant information occurs in the last columns of Tables
V-16 through V-29. Two types of comparisons may be done with this rms

estimate error data,

1. The different measurement combilnations may be examined to deter-
mine the optimal (lowest rms estimate error) combination, This
requires that the estimate error values in the 1lst, 3rd and 5th
rows or the 2nd, 4th, and 6th rows be compared for the in~track
Tables, 1In the cross—track Tables the numbers in the 1st and
3rd or 2nd and 4th rows should be examined, This process clearly
sepregates the data depending upon the use or non-use of the
external velocity measurement, The most significant conclusion
is that the IT-2 measurement combination is inferior for in~track
navigation when compared to the IT-1 or IT-3 combinations, par-
ticularly in the cases where the external velocity measurement
is omitted, Therefore it would take at least two Bell RGGs
(IT-3 measurement combination) to improve significantly in=track .
navigation, The cross-track data shows no great improvement when
two RGGs (CT-2 measurcment combination) are used instead of only
one (CT-1 measurement combination), These trends confirm the
‘ntuitively obvious fact that the best information comes from
he in-track derivative of the desired gravity perturbation com=
porent, Ty, in-track, and Ty cross—track, Unfortunately
one RGG will supply a measurement of T but it takes two RGGs

x
to adequately determine TI,. y
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The improvement in estimation accuracy possible through the use
of the external velocity measurement can be found by comparing
the E/EVM and I/EVM cases for each measurement combination.

The information added by the external velocity measurement im-
proves velocity error cstimation by an average of 50% and posi-
tion error estimation by not more than 10%,

Table V-16
IN-TRACK(IT) VELOCITY ERROR ANALYTIC COVARIANCE COMPARISON
FOR V= 5,144 n/sec
Meassurement - K AF‘
Combination : "va
(m]sec) (1/sec) (mz sec)

IT=-1

(B/EVM) 5,144 -— 1,079
IT-1 \-4

. 37 .

(I/M) 5.144 6,376 0,52
Ir-2 1 — 91,93

(E/EV!) 1,076 .
11-2 \1 Ak 4,814
(!/EV)I) 1.076 $.473 .
IT=-3 6,858

(E/EVN) - 1.602

-3.43

IT-3 6.858 A4

CI/EVM) [ ] 9.505 0.634

-3.43
* AF = analytic formulas
-7~
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Table V=17

IN-TRACK (IT) VELOCITY ERROk ANALYTIC COVARIANCE COMPARISON
FOR V_ = 51.44 m/scc

Measurement 3 K AF+
Combination Gévx
(n/sec) (1/sec) (mm/sec)
| \!
: IT-1 5,143 - 10.79
{ (E/EVM)
| -
IT-1 \! ) \-4
5.14 . .
(1/EvM) 5,143 6.376 5.195
;
IT-2 . _—
(E/EVA) 7.139 693,53
IT-2 \—2
7.13 1.128 41.81
(1/EVM) 139
6.855\ ]
IT-3 ) _— 16.01
(E/EVM) -3.428\ |
6. 855 ] »
IT-3 . 9,503V €.34
(1/EVM) ~-3,428\" |

t AF = analytic foruwula




Table V-18

IN-TRACK (IT) VELOCITY ERROR ANALYTIC COVARIANCE COMPARISON
FOR V_ = 514.4 m/sec

Measurement 3 : k' AF
Combination ('?»\.'x
| (m/sec) (1/sec) (mm/sec)
i
{ IT-1 3,423\ - 88,29
i (E/EVM) : :
2 -4
IT-1 3,423 5.202" 46.93
(1/EVM)
j
IT-2
5, _ 149.4
(E/EVM) 216
_ ) -4
i:/:vm) 5.216 8.842" 61.18
3.152\
IT-3 2 -_— 109,11
(E/EVM) -1.593"
3J5»2
IT-3 Y 52 26
(1/EVM) -1.593\? 52.
i
{
)
\ -69-
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Table V-19

CROSS-TRACK(CT) VELOCITY ERROR ANALYTIC COVARIANCE COMPARISON
FOR V_ = 5,144 n/sec )

Measurement a K AF
Combination v
x
(m/sec) (1/sec) (mm/sec)
CT-1
CT‘I \—4
5. . .
(1/EVM) 143 €.377 0.520
CT-2 5,148 _ 1\ ots
(E/EVM) 7 .
_j3.421\'
5.148 -4
cg;:vm . 6,378 0.5197
L33.421\'3

In the cross—track direction, that member of a calculated from
Eq. (4,14) corresponding to the measurement of ryz is an
imaginary quantity, This indicates that the numerator of the
transfer function associated with ryz shouyld be written with
a first degree s term as

a = a' s .
yz yz s=Jws

The foregoing footnote applies to Tables V-~19 to V-21,




| Table V-20
| CROSS-TRACK VELOCITY ERROR ANALYTIC COVARIANCE COMPARISON

. FOR V_ = 51.44 m/sec

Measurement a Kt AF
: Combination Govy
i 4
(m/sec) (1/sec) (mm/sec)
)
CT-1 5,142\ — 10.78
(E/EVM) : o
CT-1 Jd \-4
5,14 6.375 5.195
(1/EVM) -142
I
B ! 1
| S 5,137\
‘ - —_— 10.78
-—2% .
(E/EVM) -3t.656\72
3
=
5,137\}
CT-2 - 2% 6.373\ " 5,194
(1/EVM) -31,656% .

* See footnote Table V-19
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Table V-21

CROSS -TRACK VELOCITY ERROR ANALYTIC €OVARIANCE COMPARISON

FOR V_ = 514.4 m/sec
Measurement - , AF
Combination a K ngx
(m/sec) (1/sec) (um/sec)
CT-1 4, 802™? — 104,26
(E/EVM)
?§7évu) 4,802V e.161N" 51.07
cT-2 4,674'\2 Loz.o
(E/EVM) . .
L-j2.079
g 9
4.674\2 —
cr-2 6.079
(1/EVM) L-32,079* 50,73

See footnote Table V-19

-
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Table V-26
CROSS-TRACK POSITION ERROR ANALYTIC COVARIANCE COMPARISON
FOR V. = 0.5144 m/sec
Measuremenﬂ - - - . AF
Combination b ¢ o k TR
y
!
: (m-sec) (m) (m—sec) (1/sec) (m)
i
!
i CT-1 -1.675N" Y| Z6.201N | 3.3a7ND — 10.58
: (E/EVM)
i
i e - -15
1 CT-1 —1.325% Y| L2 09Nt 264N | 45120 9.98
- 5
6.2a6N 22||[ 3. 347> ’
- 9.48 i
- 2
-2.156V 20 1. ;1N J
5
320 | 3.3a7 \-15
0 ” 4,499
—2.156 720 | -1, 3100 9.48
|
4

P &
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Table V=27
CROSS-TRACK POSITION ERROR ANALYTIC COVARIANCE COMPARISON
FOR V_ = 5,144 m/sec
Measurement - - - , AF
Combination b c o k dat
y
(m—sec) (m) (m-sec) (I/Sec) (m)
CT-1 \6 2
-3,346 -2,509\
(E/EVM) 2.509
CT-1 ~2.646"° -1,687°
(I/EVM)
|
= - M
CT72 -3.349\8 -1.256M
(E/EVM)
3.09\"10 2,76
L L i
r r— 5 )
\6 \3
CT~2 -3.349\ . -1,068
1/EVM .
(1/EVM) L1,403 2,76
L R
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CROSS-TRACK POSITION ERROR ANALYTIC COVARIANCE COMPARISON

Table V-28

FOR V= 51,44 m/sec
Measuremend - - - , AF ;
Combination b ¢ o k IR |
y oo
(m-sec) (m) (m-sec) (1/sec) (m) |
i
= .
7 i
CT-1 -3,345\ —2.508"° 3.347\ - 34,58 i
(E/EVM) |
|
_ 7 4 7 -4
CT-1 -2.646> ~1.686" 2,646 6.375" 31,78
(1/EVM)
{
r - — ) r‘ =
7 3
CT-2 -3, 342> -1,253\ 3,347V 31 2
(E/EVM) - 5 )
/ L5.172\ g 336N || -1, 51
= \7 r~ \4 r~ \7'1
-3,342 ~1.065 3,347 _4
-10 2 s || 6373 30.26
~-5.539 -1.336 k_1,313\
- L. - J
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Table V-29

CROSS~TRACK POSITION ERROR ANALYTIC COVARIANCE COMPARISON

FOR Vx = 514,4 m/sec
Measurement - - - , AF
! Combination b ¢ o k “Ek
i y
3 (m—sec) (m) (m-sec) (1/sec) | (m)
I I
@
:. CT-1 ~3.124\8 | _2.187\ 3,347\8 — 102,92
i (E/EVM)
i) ]
i 8 5
‘ Cg;}}:m’ -2,51° -1,443) 2,647V | 6.160"7? 67,02
: |
i _ 8 H _ 4 : - T
. CT-2 -3.041" -1,140\ 3,347\8
(E/EVM) 1 3 - 98,68
-5,161" -1,677\ -4,152\8
L L - -~
8 M 4 [~ ]
cT-2 <3.041\8 {If g 242\ 3,3a7\8 -4
1/EVM - 6,079 67.26
(1/EVM) L—5,840\_ 1 L—1.677\3 -4,152\6J

[PV uY e o e g
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Chapter VI

GRAVITY GRADIOMETER SURVEYING TO
IMPROVE THE GRAVITY PERTURBATION MODEL

The gradiometer may be used as a survey tool divorced

INS application, Gradiometer survey data, and in fact any

which provides gravity information, may be used to improve

gravity model used in the INS (inertial navigation system)

reduce velocity and position error,

The rms velocity and position error can b2

(4.4) in the following form

sg skSVm
(+) =%

BV =

where the x or y subscripts have been omitted

used in either the IT or CT directions,

power spectra are given by

t ¢;(s) kzq2
o (s) = - .
R (+)(=) (=)
and
. szoz(S) szkzq2
Q’%v(s) -—
(+)(=) (+)(=)

velocity error variance can pbe expressed as

t
. \
2 qu 1 J @g(s
o, = —5 + = (—‘;T'_) ds
AR 2 T 0 {

8

-R1=

INETY BRI S ST - AR e

from any direct
survey data
the reference

and consequently

found by first writing

(¢.1)

as the equation can be

The velocity and position error

(¢.2)

(6.3)

Recalling the variance formulas in (4,8) and (4.47) the position and

(6.4) !
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i

and

. 9 1, .
9 kq2 1 L Sz¢g(s)
0',V = -—-—2 + TT—] 0 (+)(- ds . (";.5)

Again the integrals in (6.4) and (6,5) can be evaluated either numerically
or analytically, Assuming a reduced low frequency perturbation content
due to the added survey information, the analytic integral evaluations
consider only the Schuler poles, The validity of this assumption can
again be tested by comparing the analytic and numerically obtained vari-

ance values, The analytic formulas are

t, N
k ¢ i)
2 a, LG
05R = 2 + 2 (6.6)
2w 2kw
S
and
t
. kaq, < (jw)
oz = —Té + _E__ji..
W 2 2k (6.7)

The basic theory used to determine the updated gravity perturbation
t
spectrum (@g(s)) is taken from Breakwell [12], 1t is presented here for
completeness, The objective is Lo cstimate some scalar function -R(x,y)

related to the surface perturbation potential AU by

]

(5% n) = 1(@E)eu(’; 0) (6.8)

where (6.8) is written in the Fourier domain and hl is the height above
sea level at which the estimate of  is to be made, The measurement

equation may bhe expressed as

~892-
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mx1 w1l _g -5 -
z H (w) au(w’; 0) + € (6.9)

where h2 is the height above sea level at which the survey is taken,

Assume that the estimate of -fj at height h 1is given by

(@5 ) = VIE®) #(& ny) . (6.10)
The resulting estimation error is
R(w; h) = A ) - (w5 h) (6.11)

Ly T(55)R(5°%)-1(5%) Jau(5°;0)+y ()€

which means that the estimate error spectral density is expressible as

0(5%n)) = LVI(-E)m(-0%) - r(-5°)195(5F50)

(6.12)
x [HT(E%) (&%) - 1(7%)] + ¥T(-3%)Ru(3®) .

In this situation causality is not a factor as it was in the real time
filter case, Therefore to assure the minimum mean squared estimation

error, given by

- -]

2 1 S, s S .S
= —— ol (18 fy w
i S S_,i' G By (6.13)

it is sufficient to minimize (6.12) with respect to w(&g). This results
in the statistically best weighting of the measurements for estimating

4, written as

W@ = [n-0%)ef (@000 (3] TIn(=a) a8 (R0 (@) L (6.14)




Substituting (6,14) into (6,12) yields the following compact expression

. - (&5 0)1(-5%)1(&°)
(b~\ln H h)

= (6.15)

1+ ¢:U(w ; 0T (&%) R TH(-T5)

Notice that the numerator of this expression represents the a priori
knowledge of R and the second term in the denominator represents the
information added by the survey, To obtain the required one dimensional
spectrum, (6,15) must be integrated with respect to wi. In addition the
time variation spectrum, required in (6,4) through (6,7), is found simply

by dividing the one-dimensional spacial spectrum by the IT velocity,

The desired spectrum may then be expressed as

© s , -8 -5\ ~§
d° (w0)f{~-w ) f(w
r n) = o ’ sl 0 ) du>, (6.16)
* ! Vx o L+ (DZU(GS;O)HT(K)S)R-IH(-GS) y

Equation (6,16) may be used to determine the updated spectrum Q;(s) in
(6.4) and (6.5) if <% is equal to g, This, in fact, is the case when

the updated gravity model is used in the basic navigation loop.

In the covariance analyses in the next section, two survey schemes
are used, The first is a ground level gradiometer survey (GS) where the
measurement is assumed to be the vertical perturbation gradient, Fzz'
Recall that at least two Bell RGGs are required to obtain this quantity,
In all the a priori studies the BHM is taken as the gravity perturbation
model to be updated, Therefore the surface potential fluctuations,

from (3,4), are described as

. -a 3 -2|@®|p
(hAU(h’ H 0) = 2 l‘j © (6.17)
i=1
84—
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The functional relationship between (6,17) and rzz is found to be

i .2 =|&®|n,
H(o®) = |5 e 2 (6.18)

and

] 4 -2|%°n
H(wS)H(—as) = ‘Iﬁ e 2 . (6.19)

The second type of survey used is the proposed low-low GRAVSAT con-—
figuration where two low earth satellites follow each other in circular
polar orbits and are connected by a very accurate Doppler rate indicator,
The relative velocity changes between the two satellites indicate gravi-
tational field perturbations., The functional relationship between the

Doppler data and the potential perturbations is

-S
sate}lite satellite o—lw Iha WA
- 2 _ _ e X -5
Vx Vx = ANX = v 2j sin ) AU(w ; 0)
cir

(6.20)

where Vc_ is the unperturbed circular velocity and A is the satellite
ir

distance spacing. Assuming that the perturbations of interest have
wavelengths substantially greater than 4 then H(&S) from (6.20)

may be approximated as

-15%|n,

H(o®) = 7 < jlaslu cos & .21)
cir

-s
where © denotes the direction of w . Then

-2[&S[h
H(QS)H(-BS) = < ‘l-ﬂslzf.\zcos2 a .

(6.22)
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It is possible to modify (6.22) to compensate for the rotation of the earth
under the satellite ground track as explained by Breakwell [Ref,

12, p. 3838], This correction is necessary since the north-south and
south-north satellite ground tracks are not parallel, These tracks diverge
at an angle # having a value of approximately 1/16 radian at low

latitude , To compensate for this effect (6,.22) should be replaced by

-2laslh2

- - 1 -5 2 2
HOOH(-5°) = 3V < 5% a [cosz(awﬁ)+cosz(e&fﬂ] (6.23)
cir

or simplifying (6,23) using trigonometric identities

-5
-8 - e-ilw Ih2A2 ;2 2 -s? 2
H{W )H(-w) = —_—— [f.): cos ® + w; sin™g ] . (6.24)

cir

For both the gradiometer and satellite surveys the measurement error is

given by the following formula in the scalar case

2
OME

R = N/AS (6.25)

2
where ME is the mean-squared measurement error, N is the number of

survey measurements, and AS {s the area surveyed.

The analysis in the following section investigates both the IT and
CT directions, The transfer functions relating g, and gy to the BHM
perturbation potential are respectively

~2|f|n,

r(&s)f(-as) = (mi)z e (6.26)

, -2l8°n
HED) - = (397 e 1 (6.27)




With these relationships the error spectra from (6,16) and subse~-

quently the INS position and velocity error may be determined for the

following four separate direction/survey options,

IT/GS (in-track/gradiometer survey). This combination indicates al-

teration of the gx spectrum using gradiometer survey data, For this
case (6.16) becomes

[~

-2|aslh;
2 © b.e
(w) i
X

1 1
V.
X

t -t . s
¢g (w 'hl) = _2lﬁSThé dMy . (6,28)
x ofl +

i
3
NéAS |Z)S|4 T e
o i=1 *
zZ

IT/SS (in-track/satellite survey). This again indicates alteration

of the 8, residual but this time with a low~low GRAVSAT satellite survey,

The updated g, spectrum may be written as

- ]
3 -2|uF|h1
. ((,.)s‘)2 ® 2 ®j_e
t -t X i=) S
0 (w5 h) = —= doy  (6.29)
gx 1 vx -S -S\2 2 -5,2 2 y
o1 + ¢c(w )[(wx) cos ® +(my) sin‘g)
where
2 S1=s].!
-5 N/AS [ & 3 -2l@ I"z
c(®) = Y ¢ e . (6.30)
2 v i
cir i=1

ODoppler

CT/GS (cross—trackés;adiometer survey)., This again indicates altera-

tion of the gy residual but this time with a low—-low GRAVSAT satellite

survey, The updated gy spectrum may be written as




3 -2|:)s|h'
Sm (m ) 2: ; € 1
1 i=1 s
\b ((l) H 1) = ﬂ 3 ] dwy . (6,31)
By x 70 N/As I'SI 3 —leslhz
o, €
c;j iz=:1 .
zZ

CT/SS (cross—track/satellite survey), Here the gy spectrum form—

ttla updated by satellite data appears as

3 -2[ %8| n
] (w ) 2: o, e
ot (&% n) = —-1-T—r 1=1 aw® . (6.32)
8 1 Yy —8.p, S\2 2., 8\2 . 2 y
y *0 ‘14 c(w )[(wx) cos '&I-((dy) 8in‘ %)

The first step in doing the covariance comparisons in the next
chapter is to numerically carry out the quadratures in (6,28) through
(6,32) to obtain the updated gravity perturbation spectra. These spectra
are subsequently used in the numerical evaluation of (6,4) and (6.5)
to be compared with the position and velocity errors obtained from (6.6)
and (6,7) where the Schuler values from the updated spectra are used in

the analytic formulas,
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Chapter VII

COVARIANCFE COMPARTSON FOR REAL TIME V3
SURVEY USE OF A GRADIOMETER

The objective in this Chapter will be to compare the real time
estimation errors in Sect, B of Ch, V with the velocity and position
errors resulting from the use of an updated gravity model. To obtain a
valid comparison the survey parameters must be chosen judiciously,
particularly in the case of the gradiometer survey. The survey vehicle
velocity and gradiometer averaging time are the principal parameters,
Assuming that the latter is fixed it is important that the gradiometer
survey and carrier vehicles have the same speeds to assure equal wavelength
resolution in the real time and survey applications, Actually, the im—
portant parameter in the survey situation is the number of survey measure-
ments per unit area (N/AS). If the survey track spacing is set at a
distance equal to the minimum wavelength information desired (10 km),
and with a fixed gradiometer averaging time, the survey velocity completely
determines the measurements per unit area and the time to survey a speci-
fied area, Then the claim of equal survey and carrier speeds ensuring
equal resolution is contingent on the track spacing chosen. From a

practical standpoint, the survey times for a given area are of interest,

Table VII-1 gives the survey times for an area of 1 X 1012 square
meters, about 1/15 of the continental United States.
Table VII-1
SURVEY TIMES FOR 1 X 1012 SQUARE METERS
Survey Velocity Survey Time
(m/sec) (days)
0.5144 2250
5.144 225
51,44 22,5
514.4 2,25
-89~




Note that the lower velocities take excessive survey times, Gradiometer
survey height also influences the resolution question, Thus to maintain
equality the gradiometer survey and carrier vehicles will also have equal
assumed altitudes, With these facts in mind the gradiometer survey para-
meters arc as follows:

survey height: =zero km

survey velocity: carrier velocity

gradiometer averaging time: 10 sec

track spacing: 10 km

gradiometer accuracy: 1 Edtvos ,

The GRAVSAT mission parameters are more interdependent and conse-

quently less flexible than the gradiometer survey quantities, Nevertheless,

the GRAVSAT survey provides an interesting alternative to the gradiometer
survey with very real possibilities, Nominal parameters for a low—1low
GRAVSAT mission might be

satellite altitude: 180 km

circular velocity: 7,796 km/sec

Doppler accuracy: 1 X 16-6 m/sec

satellite separation: 3 deg (341,87 km)

length of mission: 6 months

time between measurements: 8 sec

Assuming these survey parameters, Tables VII-2 and VII-3 compare the
real time data from Tables V-5 through V-12 with the variances obtained
from (6.6) and (6,7), In order to standardize the data the optimal value
of k 1is used for both the real time and survey applications, 1In the

real time case the optimal k 1is given in (4,31) (x or y subscript as
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Table VII-2

REAL TIME VS SURVEY VELOCITY ERROR COVARIANCE COMPARISON

EVM = External Velocity Measurenmnent

GS = Gradiometer Survey
SS = Satellite Survey
RMS Velocity CARRIER VELOCITY
or Velocity I
Measurement Estimate (m/sec)
Combination Error
(mm/sec) 0.5144 5.144 51.44 514.4
AF -7
oy 4.1 0.5196 5.195 50.8
IT-1 X
(1/EVM) NI
Ugv 7,098 0.493 4,93 47,62
X
AF -
Ony 4,095 7| 0.456 2.574 14.46
X
IT/GS
NI
(o) 0,0177 0,422 2,541 14,32
8V
x
AF ~7
°5V 4,095 8.295. 16,94 10,72
x
IT/SS
NI
USVX 6,923 5,95 23,14 11,54
AF -7
I 1,382\ 0.519 5.195 51,39
y
CT-1
/ NI
(1/EVM) Uév 4,089 0.4934 4,965 50,98
y
AF ~7
Uav 1,382 0,4022 2,544 14,46
CT/GS y
GSV 6.556 0,386 2,52 14,32
y
AF 7
GSV 1,382 5,18 30, 37 57.18
y
CT/ss
NI
USV 3,99 4,46 22,77 56,54
y |
Note: Data assumes BHM (Basceline leller Model) prior to survey update




Table VII-3
REAL TIME VS SURVEY POSITION ERROR COVARIANCE COMPARISON

VM - External Velocjly Medsurement
GS = Gradiameler Survey

58 = Satellite Survey :
RMS Position CARRIER VELOCTITY
or Position o (m/sec)
Measurement Estimate T ‘
Combination Error
{m) 0.5144 5.144 51.44 514 .4
: 1
AF
o5k 3.79 8.98§ 21.47 56.71
IT-1 h
N}
(1/EVM) T 3.73 8.71 20,58 58,76
"X
AF _
o 3.a% "’ 0.367 2.076 | 11.67
IT/GS X
oNé 0.219 0.556 2.297 11,72
P X
¥ —
oo 3,087 | .69 13.66 8.646
IT/SS *
NI N
IsRr 108.8 5.55 11,55 8.46
X
oA 11.9 21,17 37.83 | 76.42
“p 5R o
T-1 y
L 11,89 21.12 37.54 74,77 <
AF \-7
USR 1.115 0.3244 2.05 11.67
cT/GS y
NI
LA 0.113 0.468 2.23 11,75
Yy
ogi .15V 7 | 4.8 24,47 46.12
CT/Ss M
G:ﬁ 110, 82 34.29 25,94 46,23
y
Note: This data assumes BHM prior to survey upﬂate.
-0
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applicable) which is attained in practice by simply includi g the
external velocity measurement in the IT-1 or CT-1 combinations, For the
survey case, k, used in the basic navigation loop is chosen using (4,31)

except that the update of Q;(jwq) is done a priori so that
B t:(' ) 7.1
= og Jw, (7.1)

where the value on the right hand side of (7.1) comes from the updated

gravity perturbation spectrum,

From Tables VII-2 and VII-3 three things are immediately apparent,
First, for the low velocity survey cases, agreement hetween the analytic
end numerical standard deviations is poor for velocity and position
error, This is not surprising when it is remembered that neither the
analytic velocity nor position results take into account any low fre-
quency contribution, The existence of a dominant low [requency contribu-—
tion produces the observed discrepancies, The second obvious fact
that the gradiometer survey always produces more accurate results than
the real-time gradiometer, Reflecting upon the situation, his too is
is an expected result since the gradiometer survey gathers information
along many tracks while the real-~time gradiometer has knowledge only
along the present vehicle track, The third and most difficult trend
to explain is the GRAVSAT vs gradiometer survey behavior, In general,
t+o gradiometer survey gives better results than GRAVSAT, The high fre-
quency gravitational potential is attenuated with increasing altitude,
This makes the ground-level, 1 Edtvos gradiometer more sensitive to short
spatial wavelengths (characteristic of Schuler frequency at low velocity)
than the 10_6 m/sec Doppler at satellite altitude, However, a second
consideration working against this trend is that as the carrier velocity
increases, so too does thc spatial wavelength corresponding to Schuler
frequency, It just so happens that for the highest velocity IT case the
Schuler spatial wavelength is so long thal GRAVSAT has a superior signal-
to~noise ratio when compared with that of the gradiometer at ground level,
Had speeds above 514.4 m/sec heen considered, trends in the data sugpest

this same type behavior might appear in the CT direction also.

-93~

e — e ————p

A




Chapter VIII

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

A, CONCLUSIONS

areas: those resulting from the real time work, and those from the

survey application of the gradiometer to inertial navigation,

j
|
i The conclusions resulting from this work can be classified in two
?
)

A-1 Real Time Gradiometer Application

It has been shown that the modified Wiener filter analysis produces
low-order filters for inertial navigation system velocity and position

error estimation.

Analysis of the accuracy of these filters is accomplished in several
ways, If Kasper's rational gravity medel is used, covariance compari-

sons with the Kalman filter show agreement in the rms position and

velocity error estimate error typically to within 1%, An indirect
method of proof is needed for the more accurate Heller gravity model,
This is done by a comparison of analytically and numerically obtained
estimate error results, Agreement of the analytically and numerically
obtained estimate error values is always within 10%, on the average
about 5%, and in some cases below 1%. This assumes that for velocity
estimation the carrier vehicle has a velocity at or above 5,144 m/sec
(10 knots). Therefore for the single gradiometer measurement cases used
in the above covariance comparisons the approximate low order filters

are very nearly optimal,

The approximate nature of the derived filters leads to the carrier
vehicle velocity limitation mentioned in the previous paragraph. Fully
stated this limitation requires that the position and velocity filters
be used only on carrier vehicles traveling at or above 5,144 u/sec (for

the assumed levels of external velocity measurement noisce and gradiometer

accuracy) to avoid at least two problems that arise, These problems arve:

T .




(1) the velocity filters contaln insufficient low frequency gravity
perturbation compensation which makes them inaccurate at low velocity
whiere therc is a large low frequency gravity perturbation contribution;
(2) The position error filters do compensate low frequency gravity
disturbances which unfortunately produces excessively long low frequency
pole characteristic settling times in the low velocity cases, In spite
of a pole placement technique which is marginally successful for mid-
range velocities, and the improvement of the Heller model to reduce

the low frequency portion of the gravity potential perturbation spectrum,
the under 5,144 m/sec velocity range is unsuitable for approximate
filter application at the present time, Lower velocities may be more
suitable as future gradiometer and GRAVSAT surveys provide greater

knowledge of the earth's gravity field.

The ability of the Wiener technique to produce approximate filters
for multiple measurement situations makes it possible to compare the
advantages of using two gradiometers as campared to only one, The
effect of using the external velocity measurement as a filter input
may also be explored, In the cross—track direction using one gradiometer
(CT-1 measurement combination) as opposed to two (CT-2 measurement com-
bination) praduces a degradation in estimation accuracy of not more than
2% for velocity error estimation and 11% for position error estimation.
However, using one gradiometer in-track (IT-2 measurement combination)
as opposed to two pradiometers (IT-3 measurement combination) yields a
degradation in velocity error estimation accuracy of from 0,5 to 1,5
orders of magnitude and in position error estimation accuracy of from
1 to 2 orders of magnitude, Clearly, if significant improvement over
the a priori position and velocity error values is desired, two gradi-
ometers are required in-track while one will suffice cross-track, Addi-
tional estimation accuracy may also be obtained for a given gradiometer
measurement combination by simply including the external velocity
measurement as a flilter input, 1In most cases of velocity error estima-
tion this results in an improvement of about 50%, The improvements in
position error estimation accuracy are much more modest, being generally

on the order of a few percent, due to the increased effect of low

e




frequency disturbances as opposed to those at Schuler frequency,

A-2 Survey Gradiometer Application

Of the gradiometer and GRAVSAT surveys considered in this research
the gradiometer option is more accurate by at least a factor of four,
except for the highest velocity in-track case. As expected, the data
show that the gradiometer survey always produces more accurate results
than does the real time gradiometer scheme, However, it may not be
possible to obtain gradiometer surveys over all potential carrier
vehicle routes. Even the GRAVSAT survey with worldwide coverage showed
resolution problems at spatial wavelengths greater than its altitude
caused by high frequency attenuation of the gravity potential, There-
fore, in spite of the excellent INS accuracy attainable with the grad-
iometer survey, the most likely scenario for improving INS accuracy in-
volves immediate real-time use of the gradiometer with a gradual improve-
ment of the gravity model from data collected in surveys, These data
could come from any source supplying gravity information, even the
"stored real-time gradiometer outputs, One final question is the ability
to store aboard a carrier vehicle the large number of coefficients
necessary to describe a world-wide gravity model with a desired resolu-
tion of approximately 10 km, One solution to this storage problem
might be to use an alternative gravity field description consisting of
strategically placed mass concentrations in the projected area of
vehicle operation. This makes it unnecessary to store a world-wide model
thus alleviating the storage problem while making the actual computa-

tion of gravity simpler.

B, RECOMMENDATIONS FOR FUTURE RESEARCH

The approximate [ilters used to estimate position and velocity
error from the real time gradiometer/INS combination were derived by
assuming "white” gradiometer and external velocitly measuremen! noises,
Real gradiometer noise is colored, Dhata already obtained from the
gradiometer manufacturers and processed by the Analytic Science Corp.

could be used, along with Navy test data, when it becomes available,
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to develop morce discriminatihg filters, IFitting the assumed external
velocity measurement nodise to a particular carrier vehicle's measure-

ment equipment would also help to develdp better filters,

The method uséd in this research to analyze the error spectrum

of the pravity fleld improved by survey data provides several options

for further study, This error spectrum analysis method could be used
to optimize gradiometer survey parameters, Additionally it could be

used to compare different measirement scHemés as was done with the low—

- a—

low GRAVSAT and ground level gradidmetir surveys in this research, Two
other survey questiotis that might be explored are: (1) The possible
problems and merits assBeiated with storing real time gradiometer/INS
data for post processing and gravity model improvement; (2) The advan—
tages of flying a gradiometer on bgard the GRAVSAT spaceciraft as an

additional data source;




APPENDIX A

POISSON'S FORMULA FOR UPWARD CONTINUATION
OF THE EARTH'S POTENTIAL

To prove Polsson's formula it is necessary to relate the following

spherical harmonic forms for the earth's potential:

® f
U(R, 6, ¢) = “—; i, ¥, (6, ¢) (A1)
¥ 7’ R (5 =y I Am
" ® u%ﬂn

Ur, 6, 6) = B ; =D 3,%,(6 ¢ (A.2)

y Oy Ry [y T Im im* 7

where

i § ¥, = K,P, (sin g)el™ for m=20 (A.3)
- §Em = Keszm(sin G)e-ilmll for ms 0. (A.4)

Note from (A.1) that

U(R, 6, 6)¥*, (6, 0)an = = § lz:
§ P 7 Lomy 7 R, =0 m =0

1 1 (A.5)

X JE

¥, (9,007,  (6,6)d0
) )
My Gmy T lym,

where the integral specified is over the entire earth's surface, Assuming

- that the Yzm's are not only orthogonal over the sphere but suitably (fully) !

normalized [17] then

: § illml(e’ IV g (Or 00 = ATy g T (A.€)

2 172 172




Substituting (A.8) into (A;5) ylelds

§ u(ry 6 o)ﬁm (65 ) = hn%—; 3&“ ‘ (A.7)
4
Therefore
7, all § 'y (A.8) i
Tom = pan 3 URy 6 0)7,(6, o) @ . :

Substituting (A.8) into (A.2)

F o BB o4 - |
U(r, 9} d’) = zi‘,? § g (—*9,') ﬁz Y&H(G’ 0)

m== (A.9)
x§zm(9*, o) U(Ry 670t )dls
Making use of the identity )
P eos v) = g5 Mge ¥, (00)¥, (65 o) (As10)
where | is the angle between (1, N, ) and (1, N', &'), (A.9) caii

be written as

- R, 61 i ! toat [
, ! 20+1)P Y)U(R 56,6 )d
U(r,6,¢) = :‘n §F (=) (26:1)P (cds V)U(R ;6" ‘' aa)
=C

r

Since  is the angle between Ep and ¥ then

' 48

) n’ R{
b |§“-;| = :r"[l 1 (—;-) -27‘-’cos v]’ . (A.12)

Usihg the generating lilction for Pl(g) eéxpressed as

{1+ 5'2 - 25;‘]‘* = g g'“pn(g) (A.13)

and substituting in the quantitties




E' = ;£ and ¢

then from (A.12)

[1+ 12 . 255']‘§

Substituting (A.14) and (A.15) into (+.13)

l
! o
! 1 2 2 - 1 — Rtl) 1
! D = [R'D+ r - 2R.r cos V) : - ) ('r— ) Pz(cos ¥) . (A.16)
! 1 £=0
f % Taking the negative of the partial with respect to r of (A.1€6) yields
2rR (r - R_ cos V) © thl-1
® ® = 2( 4+1) D P (cos V) A
3 1 4 . (A.17)
=0 r
-
Subtracting (A.16) from (A.17) yields
ZrR(B(r-R(Dcos w)-n.pz © R, brl R{Du.u ’ ‘
3 = ;: [(214:—2)(;— -(-r— Pz(cosw)}- (A.18)
D 4=0
or
2 2
RG;r - nmp o Ry 41 (A.19)
S = 2 (26D pyfeos v)
D =0 ’
Putting (A.19) into (A.1l1l) gives
NP T
u(r, 6, ¢) = — § - . (A.20)
o ANE S NS

—_a o -

This equation applied to the perturbation potential is the desired result,
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i Appendix B
SPHERICAL HARMONIC AND HELLER MODEL RMS POTENTIAL

COEFFICIENT VARIATION EXPRESSIONS

i ) ‘ The GEM 10 [14] data is given in terms of sz's and S, *s from

the following model

© R I
U(r,0,0) = %" L’Z Z(r—") l-’zm(sin F))[Cemcos m¢+C , sin mé]. (B.1)
N £=0 m=0

2
Therefore the equation for oy
)

following spherical harmonic form first defined in (A, 2)

(Eq, 3.15) is best derived using the

© 2 R 4+1

1 - -
u(r, 6, ¢) = &= ; Z (— J, Y, (0, ¢) (B.2)
&n =0 ==/ r Im " im
!
' is is first necessary to establish the relationship between sz, SLm
: and jzm' To do this consider the plus and minus m pairs in (B.2)
| for a given 4
}
i " R(B)f’fu_
: — (= J,K, P, (sin A)cos md + i sin md| + J K
‘ R dm Am : (- ) -
| n ¥ ' m fm sm e(=m) " £(~m) (B.3)
' -
% X pE(-m) (sin Q)[cos md - i sin md ),
|
: Assuming that
4
? -
P, in A = in /1
' (sin #) Pﬁ(-m)(51n ) (B.4)
|
! ( 1)Ill
Ks,’m B (2 - & ); (B.5)
\OIH

!
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1 - (B.6)

K, — -
£(-m) (2 = 80 _m) )3
then (B.3) can be written as
" (nD b1 » o m ‘
T (7)) Py lsin6) - 3, (-1)"(cos mo + 1 sin mo]
i (2-8,,) (B.7)

+ jz(_m)tcos wd - i sin md ) }.

Therefore for even m (B.7) becomes

R4+l I, +3 3, -7
" - I © A~ m "~ 0(-m) .
E:fr ) pﬂm(sin 6) [______S—ig]cos m¢+i[ ] sin mb l (B.8)

(2-5 ) (2'50m) even m

and for odd m

R 1 J -3 3, +d 1
EETT;s ﬁ'ﬁem(31n 6) [_&L:ﬂl__gg%]cos m¢-i[;£g—-££:§i]sin md | .

L (2~ Bom) (2—80m) odd m
(B.9)
Then for even m let
. ) J@ + JEE? ) I
{m even m (2 = aom) even m (B.10)
I, -3
fm -m
s&lm = i (B.11)
(2-?\ )
cven m an even m
and for odd m 1let
~104-

.- T e




_ fm L
™ odd m (2-8_,)° dd m (B.12)

343
| T Am 4(-m) ]
s = =~1 I . (B.13)
Im odd m [ (2 - & )2 ,odd m

Substituting (B.10) through (B.13) into (B.8) and (B.9) and summing over

the required positive values of 2 and m gives
" & L R, 41
- B — p i B.14
U(r,6,0) = R g m};(r ) P}gm(sin 6)[Cem cos mp + S, sin mp] ( )

which is identical to (B.1).

To solve for 3 and J in terms of C and S{,m first write

Am 2(-m) fm
from (B.10) and (B.11) for even m

3 -3 3 (B.15)
(2 8om) Com = Yim Jﬂ(-m) ’
% - -
- - = - . B.
U2 = 050" Sp = g = Ig(em) (B.16)
Adding (B.15) and (B.16) yields
- ' .
= - -1 . . .
2Jﬂm (2 c\om) lc@m sde (B.17)
Equation (B.17) is, however, inaccurate for the case w 0  lor which

the following relation holds




|
|
i

. a—— -

B e

B T U

3% = Cp - (B.18)

To incorporate (B.18) into (B.17), write 2 as

, 2 -
(2 -8 (2-8 ) = . (B.19)

Then

1
J, = c, -1is,] L . (B.20)
fm (2 - ﬁom)§ In £

ven m
Alter subtracting (B.16) from (B.15) this same type analysis yields for

cven m

1
To(em) = a—_—-)}- [Cpn + 15, ] . (B.21)

[9) even m
on

Using (B.12) and (B.13) to analyze the odd m case yields

odd m

- 1
J, = [, + is, ] . (B.22)
Im (2 - 8om)§ fm £m ,

- 1
J. = ———I (c, + 15, ] . (B.23)
@( -m) (2 - f)om) ﬁm zm lodd m

Rewriting (B.20), (B.21), (B.22), and {B.23) in the following more com=

pact form

m
' T Com = 1850, (B.24)
2 -5 )

om

Y ]

{m ,
\
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N

1

Jz(-m) = E——~*—f——;£ lCem + i SﬂmJ . (B.25)

2 -0
onm

It is also possible to re—express ?ﬂm as

- (_1)m - . —im)\
Y = P, (sin Ao (B.26)
om
- - 1 = s fimx
Y@(-m) = ?;—j—:——gg ltm(SIH 9)( . (B.27)
om

From (B.24) and (B.25) the following equation may be written

£ I/

1 — 1 9 2
o B G e

The expected value of (B.28) is defined as the rms potential coef(icient

variation. Therefore

2 1 2 a2 )
%5, T 2n Zg HCom) + S| - .2
7 m= ’

This gives us the first part of (3.15). To derive the Heller model

2
counterpart to 03 begin by specializing (A.11) to Heller's three laver

)

model
UR, 9 ¢ = 12—1 ;—o: ; (24+1)P (cos ¥)

(B.30)
1

- - t ] 1]
X(Rn Di/Rh) U(R” D, A', o')du'.

i’

Substituting (A.10) into (B.30)
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N ] e IARS| oL
UR, 6, ¢) = . (———) § Y, ., 8,
!)’ ) Hﬁ iE=l EE R(B m -:- Z‘ ﬂ' m

X ?z,m,(m,w)U(Rn-ni,e',dﬂ)dsz' . (B.3D)

"Again, going back to App. A, Eq, (A.8)

= & 7
__jzm = § u(r,, 0, o) Yﬂm(Q,cb)dSl (B.32)

=T

in conjunction with (B.31) yields

. - ]
o= 1 3 . - ) R‘B Di £+ = ' '
-R—-sz=—-3§ ‘ o, \ R Y”t(n’«))
P 1617 = =0 m==4'" "D n
(B. 33)
X Yoo (6,0) U(R~D;; 6" ¢')duda’
But recalling the identity
§ Yor (B 0)Y, (8,0)au = T8 ), 48 i (B.34)
(B.33) simplifies to
. R =D \£f'4+1
b - _ 1 § ﬁ( )] i) ] t '
I e Y, (6!, o)
R 3'2=:Om=-z R, fim!
(B.35)
x U(R, -D, A, ®1)8 I
Since /' - / andmw’' - m in (B.35), then for a given [ and m only

onie term in the J ¥ sequence will be nonvero. Therefore (B.35) may
(AN
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be written

ol

L3 R,-D,
Tom = I X § M Y (AT, mPIUR =Dy T e e (130)
& ) !

xlF

Multiplying both sides of (B.36) and their complex conjugates and taking

the expected value gives

bt ]

3y

" )‘) 2 ‘ 1 23: Zj: l\!\-])i),w.](l{ -hj‘>
o & B
R J (16113 ~ A it R

i Al Bl

i=1 i'

P eTYY , (A, mUlR <D, 0T, ot
X Y, (01,en)Y, (A n)UlR =Dy, 0t 57

X U(RE’-Di’ 11, 'f,r) d&f'df,«,}.

Because the potential variations from different shells are uncorrclated,

then
E H U(R =D, ©, @) U(R -D, ', ':',\I‘\W',‘t"\d..'s
G
s 0 for i A i (13, 38)
= 9 .
- R.-D. )71(7) for i it
l‘f’/(‘:- T
where f(7,4) is any function of ' and ., Applying (B.38) to (B.37)
. - B 5
2, L3 (RD2 ¢
P - =S ylst)
g o 1507 101 - k=D (5. 39)
. Y (s ¥
* § \-m (s Yzm :
However, the integral in (B.39) cquals 47 Therelove sinplilving (B 59)

using this fact gives the desired result

R 2 3 5 R =D \2 42
2 £ 1 i i
5. ~ < T > < m > . (1.10)

9
il (R -ni)‘
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Appendix C

LOW FREQUENCY FILTER CONSTANT AND RMS POSITION ERROR
ESTIMATE ERROR DERIVATIONS

The measurement combinations used in this research are given below by

number preceded by the assumed direction of estimation. Note that these

| derivations assume the use of the Heller model,

! CT-1) If a measurement of

| z = ny + € (C.1)
! is taken then
H = [0 1 0 0 0] (C.2)
and
R = rl . (C.S)

{ Equation (4.70) gives the root

l‘l 2
£ = <_—A) . «.1)
2Kk
3

Using (4.76) to determine

(2)(-ak

A
5 )

1
3 a - -3 2k = 0 (C.5)

To obtain (n%% ) the following integral (from 4,49) must be evaluated

y /




o e e e e ——m —— e e -

. m——a

t T T
o FT(s)l{\yL(s)

1 . gy 1 - 2kgso
- T '# ds -~ —;—1 > ds , (.7
=l -) R w\_(s + ) -
Using the Cauchy residue theorem this equals )
2kBs0 2xCos
1 3 3
- ds = R (C.8)
2 2(8 + P) wz
Ys s
or 2 2kBO'F>
AF 3
(o = 2 . (C.g)
z S
To include the EVM in this and any of the subsequent total estimate error
variance formulas the only modification necessary is to change k to k',
CT=2: In the case where
r :
- Xy -
7 = + e (C.10)
™
y
then
0 1 0 0 0
H = (c.11)
0 0 0 1 0
and
r1 0
R = . (C.12) .
0 r2
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The low frequency pole, obtained from (4,70), is

A
ll(r2 + 24k5)

A

(18k ,;k

v >

D) .

kaA 2kA' )
B TR A

o =

(C.13)

For multiple measurements the vector @ is obtained from both (4,76)

and (4,77). Equation (4.76) gives

then

To determine az

A
—2k3 0

use (4.77)

B
Ol 2kq
PO Y
> -
02 ws 0
B
I SR
A 2 2 °
k3 ws ws
6k4s nl
= 0,
A
24k5 +r Oé
S:—"Pv

The second row of this equation gives

A
GRJFVX

2 A
ws(24k5 + r2)

The last integral in (4,49) can now be expressed as

113

i L ke

(C.14)

(C.15)

. 16)

«Ccan




t T T
LG LR

zr 2P0 - exor
1 - ] 1 31 12 .
== b T ds . (C.18)
2nd =) 2ni wis + B :

The evaluation of (C,18) gives

| B B
2
,: GAF ) 2k301‘f"+ 6k4a2 . (€.19)
! (‘m - 2
i yha Ve
4’. 1
;
/ IT-1: If the measurement is
| 7z = rxx 4+ ¢ (C.20)
H
Then
# = (1 0o 0 o o) (c.21)
and :
R = r . (C.22) 3

k.s 4 r = 0 . (C23)

Solving for the two left-half plane poles results in

(24) = sz + s +-2§ (C.24)

where L, 18 o low frequency factor coefficient defined as

1/4

e
L = ——> . (C.25)
r

1

- G o ™ S T P APy



To determine d and e write (4,79) as
kis 1 B
! R (ds + e) = 5K . (C.26) ‘
' s + ES w 1
1 "large s" s "large s"
Using the approximation
l {
i s ~ 1 2
| ) 2 = 3 (1 - LS) (C.27)
, S 4+ —S
: (C.26) may be written '
|
: v small
; d - =X 2 2d) 2 i
- s 4+ (e = 1 s - =0, (C.28) i
w N
s
Zeroing the first and second degree s terms gives
v
a = = (c.29)
= 2 ‘.
)
s
2v
X
e = —5 . (C. 30)
L
s
The low frequency rms variance is obtained by integrating
t T T
O (MY, (s) B 3
1 gxr 1 kls'(ds + e)
- —ds = 4 - ds (C.31)
2n § 27 § 2 : .
J ) " w (4)
bl
Summing the residues at bhoth lerft-half plane poles in (C. 31) gives
[
AF \2 2k,e .
SN S . (C.32)
x/ L w1,
S
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1II=2: lor a wmeasurewent of

- 1 ’ - 1 -
[ - - ™ -~
” :{PXX ryy) + 7 ( i 2rzz\ ‘T, (C.33)
then
H - 1 0o o o (C.34)
and
R - Yy e (C.35)

2 A
k 84 + 2kf:s 4 <6k,_) + 1'1\ = 0, (C.36)

The left-hall plane poles of (C,34) produce a low frequency factor

expressible as
(14) - qz 2w, 6.8 w2 (c.37
, CHE ('N % + N .
wvhere
o d2)i
& - 6—£~+—-<—-3-) (C.38)
kA kA kA
1 1 1
) : sin(—‘- l;an—1 L) (C.39)
1 2 kA
3
A2 1/4
v = /-‘3?) 2 (C.40)
(AN = \ A -+ e . .
k1

The convergence condition for this situation is




A4 A2 A, ds B3 B
[Kys + 2Ks” + 6K ————— | = lg (kps +kys)
s +2w §_s W

N1 s

"targe s" "large s"

4 3
Assuming that the s and s terms dominate for large s and writing

. 2w 5
s 4 2mN61-'~' ) )
(C.41) becomes
Vx ) small
(d -';5)5 + (e - ZwNéld)s -2 Nél = 0, (C.43)
s

2
Cancelling the s and s terms in (C.43) gives

VX
d = == (C.44)
w
s
200,V (C.45)
(o) = —_—,
2
(V]

The expression to be integrated to obtain the low frequency analytic

variance 1is
t T
o T(S)H ¥, (s)
T L B3 B
Rx (k s 4k _s)(dsace)
1 § d L § l 2 ds
- s - s ,
2rj ( =) 2nj wf(ﬁ4)

(C.46)

Summing the residues at both of the left-half plane poles in (C,44)

ultimately gives
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2
AV B3 3 2 o .2 .2
e oy S_oant? e 02l p
(?b“x )L { ke T2ty - anyty v 20 () - b))

i3 2 2 2 B B 2
Y Y - - (] 3 K
+ k105[28\ + (51 BE)] 2k1(§51 4 ksc}/us

where

2
k3
IT-3: For a measurement of
1
—-(r -7 T +—lT
- 2 xx Yy - XX 2 zz -
2 = + = + €
1 1
— -7 —
Z(Pzz yy 2rxx * zz

then

]
The characteristic equation, again from (4,70), reduces to

2

27A A 5 A 3, A 4 A 2 A 2
-k 'r § . s =
c;—klks L *'Eka ) LI (4k311)s + (30k5rl + rl)

where it has been assumed that

=118~
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0

(€.47)

(C.48)

(C.49)

(C.50)

(C.51)

(C.52)

(C.53)




2
1f rl is small then the s term in (C.,52) is negligible and the
equation becomes
A 2
4 (30x, Lt ) (©.54)
- 2
27 A A 3 A 5 A
=%k <k
Gk + gk + 3K )
Solving for the left-half plane roots the low frequency factor is
(2+) = s2 +-g s +_E_ (C.55)
L 2
L
where
1/4
27 A A 3,,A 2 5 A
Ak k. + (k)7 4 r)
2 15 2 3 411
L = 2 ] (C.56)
(30k. + r )rl
Here the convergence condition (4,79) is
Ks® 4 2kPs? 4 ek T R e A R
21 2 3 ) 2
57 4(2/1)s
1.A 4 5 A 2 A 1.A4 A2 A d,s 4+ ©
—k s —K _s XK s 5
251 + SKas -|»12k5 4k1s + 2k3.s + 24k5 2 2
57 1(2/L)s
"large s
B 3
k.s + k?s
1 1 3
= o) . (.57
B
Ys\=k'sY 4 2k s
3
"large s"
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1 3 .
Il the s and s terms dominate, Lais reduces to

1
e 1 -E dlh + 01
qz +-g« 11 d,s + e B
’ L |2 4 2 2
'large s"

small
2
1 1 d s° 4+ (o~ dl)q - 7 1 Y €2 1
2 L L _ X
11 d s 4 (e - 2d2)q - e2 ”i 1
2 4 2 2 1 L\ ) 2
small

Using only the first equation in (C,59) since the two are

pendent gives
d
d 4_2-_’£)q2+ [e __2d_1)+_1.(e _2_2)]
1 2 27" 1 L 2 2 L
s

7eroing the first and second degree terms in (C,60) gives

2d 2d
(e - —~1) 4 —1~(e - —2 = 0
1 L 2 2 L
d +-l d = -Xl
1 2 2 7 2 °
w
s

-
[

(C.58)

n N
MI’-‘

= 0, (C.59)

linearly de-

s 0 . (C.60)

[}

(C.61)

(C.62)

This results in lfour unknowns but only two equations, The remaining two

cquations come [rom (4,80) expressed as
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v e ——— ————— o - ot

A2 1. A1 5A 2 o A
k.s + 2k35 + 6k5 + 11 zkls +-§k35 4 12k5 dlh + o]
1 A4 5A 2 A 1. A A4 A2 A
=k —K_¢ 1 —k_s s p. s >
2 1s + 2 39 + 2k5 4k1s 4 2k3s + Mk5 4 rz dzs + (2
small s
= o . (C.63)
For small s and small ry (C.63) reduces Lo
1 2 ds 4 e
A 1 1
k,_) = 0, (C.61)

Using only the first of the equations in (C.64) because of their lincar

dependence gives

(d. + 2d2)s + (e1 3 202) L (C.65)

1

This immediately produces the conditions

dl 1 2(|2 = 0 (C.66)
e+ 202 = 0. (C.67)

X

(l1 = T (C.68)
[\
-

4. =—— (C.69)




e, v -

The analytic low [requency variance integral reduces to

! _.l,(S)llT\]r l(S)

4 3 2
1 * ng‘ 1 f Al.s +Azs -+A35 +A4 i
T 20 = 21 2
! =) ] W (4+)
wvhere 5 kll?a
A1 = dlkl +'E— dz
e kB
A = e k. + 2 1
2 11 2
B
A; = dlki + 2k302
B
A/l = elk3 + 2k392 .

Solving (C,72) again with the aid of Cauchy's theorem the analytic

variance equals
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(C.71)

(C.72)

(C.73)

(C.74)

(C.75)

(C.76)

(C.77)
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